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ABBREVATIONS AND SYMBOLS 

 

Ap50 ampicillin 50µg/ml 

 

Atmt Agrobacterium tumefaciens-mediated gene transfer 
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1 INTRODUCTION 

 

Arabidopsis thaliana is a self-pollinating plant that belongs to the mustard or crucifer 

family (Brassicaceae) which comprises widely distributed genera and species of major 

economic importance. It is a widely used model plant in genetic research and is routinely 

transformed by using Agrobacterium-mediated transformation methods (Meyerowitz and 

Somerville, 1994). 

 

Agrobacterium tumefaciens is a Gram-negative soil phytopatogenic bacterium which 

causes crown gall disease in dicot plants by transfer and integration of a segment, the so 

called T-DNA (transferred DNA) of its tumour inducing (Ti) plasmid into the host's 

genome. The tissue that receives the T-DNA is transformed, becomes malignant and forms 

tumours. Tumours, in turn, produce unusual molecules called opines, which are 

condensation products between keto-acids, amino acids, or sugars and serve as important 

carbon, nitrogen, and phosphorus sources for the infecting bacterium (Tzfira and Citovsky, 

2008).  

 

Escherichia coli is a Gram-negative bacterium which is widely used as a bacterial model 

organism because it has been extremely well studied for decades, and also as it is easily 

manipulated, grows rapidly, and is available in a wide collection of strains suitable for 

genetic engineering purposes. E. coli is one of many bacterial species that posses the 

ability to transfer DNA via bacterial conjugation, which allows genetic material to spread 

horizontally from a donor population of bacteria to a recipient one of the same or other 

species (Sussman, 1997). 

 

Obtaining genetically transformed plants is made possible by the inoculation of plant 

tissues, cell cultures or protoplasts, or even whole plants, with Agrobacterium tumefaciens 

(Agrobacterium tumefaciens-mediated transformation – Atmt). A second major route for 

creating transgenic plants involves direct gene transfer techniques (biolistic method, 

electrotransfer techniques, or techniques involving the use of DNA precipitants), which 

apply only to isolated tissues and not to the whole plants. Arabidopsis thaliana is routinely 

transformed by using Agrobacterium-mediated transformation methods, which involve 

vector and transgene construction steps in Escherichia coli and, at a second stage, the 

introduction of the desired constructs into Agrobacterium tumefaciens for further transfer 

to the plant. One of the problems associated with Agrobacterium-mediated transformation 

is the decreased stability of large DNA fragments in wild-type A. tumefaciens strains 

routinely used for transformation (Shibata and Liu, 2000). 

 

The growth of plant cells in a cell culture can cause somaclonal variation (clonal 

proliferation of genotypically deviant cell lines and tissues), which is the consequence of 

growth in a non-natural environment. Another problem of cell cultures are fungal 

contaminations. Thus, many researchers have tried to avoid cell cultures: Feldmann and 

Marks (1987) successfully transformed the germinating seeds of A. thaliana. Later, 

Bechtold et al. (1993) introduced vacuum infiltration of Arabidopsis plants, which involves 

the application of vacuum in order to infiltrate the Agrobacterium transforming cells in the 

inflorescences of Arabidopsis. The method was simplified by Clough and Bent (1998) by 
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omitting the vacuum step and replacing it by dipping the whole flowering plants in an 

Agrobacterium cell suspension enriched in sucrose and a surfactant. This very simple 

technique is nowadays known as the ‘floral dip method’ and is now routinely used for the 

genetic transformation of Arabidopsis. As it was demonstrated by Labra et al. (2004), the 

floral dip technique reduces DNA changes which cause somaclonal variation to an 

undetectable level. 

 

Nicotiana tabacum, an alternative model plant in transgenic technology, was successfully 

transformed in recent years with the application of a novel approach. This involves the use 

of a conjugative E. coli strain as the T-DNA and transgene carrying host and a disarmed 

(T-DNA-less) A. tumefaciens strain as an in situ conjugal mediator for the transfer of the 

transgene to the plant (Pappas and Winans, 2003). The novelty of this method lies in that it 

simplifies cloning and strain construction steps, since it circumvents the need to create a 

dedicated Agrobacterium strain for transgene transfer. Additionally, it is especially 

convenient for the transfer of large and unstable DNA fragments, which are better retained 

in the genetic background of the E. coli host. N. tabacum tissue cultures (leaf disks) were 

treated in this way and proved that a bacterium that is far from natural in the plant habitat 

(an enterobacterium like E. coli) can collaborate in the infection process without 

considerably compromising the plant tissue.  

 

This same principle was recently tested for the transformation of Arabidopsis thaliana 

using the floral dip method (Koumpena et al., 2008). It proved, for the first time, that E. 

coli and A. tumefaciens can collaborate as infectious agents not only for the in situ, but also 

for the in planta transformation of a whole plant specimen. Transformation frequencies 

following this method were considerably low, which called for method improvement, 

pursued in the work herein. 

1.1 SCOPE OF THE WORK 

In the present work, the enhancement of the transformation efficiency and the 

simplification of the floral dip co-inoculation technique developed by Koumpena et al. 

(2008) were attempted. The most appropriate Agrobacterium strain for Arabidopsis 

transformation was used throughout the work, and pre-mating of this strain with an E. coli 

transgene donor was tested in order to increase transformant yields; various other 

modifications in plant inoculation frequency and mode were also applied. These efforts 

resulted in a several-fold increase of transformant yields and indicated ways for the further 

improvement and applicability of the E. coli – A. tumefaciens co-inoculation principle. 

1.2 RESEARCH HYPOTHESIS  

In our research we hypothesized that the a) application of different conditions in the 

bacterial growth stage and concentration upon inoculation, b) bacterial pre-mating prior to 

inoculation at various time intervals, c) an increased number of plant inoculation 

treatments to enhance plant-cell receptivity, and d) the use of different inoculation 

techniques per se, might increase transformant yields, as is usually the case with various 

bacteria-to-bacteria or bacteria-to-eukaryote gene transfer procedures. An increase in the 
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transformation ratios obtained by the biparental infection developed herein, to the levels 

obtained by standard Atmt infections, would consequently render the method we propose 

suitable for general use in transgene technology. 
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2 REVIEW 

2.1 ARABIDOPSIS THALIANA  

Arabidopsis thaliana belongs to the superkingdom Eukaryota, kingdom Viridiplantae, 

phylum Streptophyta, unranked groups Streptophytina, Embryophyta, Tracheophyta, 

Euphyllophyta, Spermatophyta, Magnoliophyta, Eudicotyledons, core Eudicotyledons, 

subclass Rosids, unranked group malvids, order Brassicales, family Brassicaceae, tribe 

Camelineae, and genus Arabidopsis (UNIPROT – taxonomy Arabidopsis thaliana, 2013). 

2.1.1 The family Brassicaceae 

The genus Arabidopsis belongs to the mustard or crucifer family (Brassicaceae), a widely 

distributed family of approximately 340 genera and 3,350 species with the greatest 

abundance of species and genera in the temperate zone of the northern hemisphere. The 

members of the family are annual or perennial herbs and are characterized by their cross-

shaped corolla and a capsular fruit known as the silique. Siliques usually consist of two 

valves separating from the central partition at maturity (Meyerowitz and Somerville, 

1994).  

 

The family is of major economic importance as a source of vegetable crops, oil crops, 

spices and ornamental plants. The most important genera of this family are Brassica 

(mustard, canola, cabbage, broccoli, cauliflower, turnip, and others), Raphanus (radish), 

and Armoracia (horseradish) (Meyerowitz and Somerville, 1994). 

2.1.2 The genus Arabidopsis 

Arabidopsis as a genus consists of nine species, all of which are indigenous to Europe, 

with the ranges of two species extending into the Northern and Eastern Asia and North 

America, specifically into the central United States (Al-Shehbaz and O' Kane, 2002). The 

only important species in this genus is Arabidopsis thaliana. It is widely used as a model 

organism and although it has no direct significance for agriculture, it is useful for the 

understanding of the genetic, cellular, and molecular biology of flowering plants in 

general, and of the economically important edible and oil-producing crops it relates to, in 

particular.  

2.1.3 Arabidopsis thaliana 

Arabidopsis thaliana plants are annual herbs that reach the height of 20–30 cm. The basal 

leaves are 1.5–5 cm long and 5–8 mm broad, oval-shaped and form a rosette. The leaves 

on the stem are smaller, subsessile or sessile, and are usually not very numerous. The stems 

are erect, they grow from the base, and are simple or branched. The flowers have a typical 

structure of the Brassicaceae family and have a diameter of approximately 3 mm. The 

siliques are 5–20 mm long, linear and smooth, while their seeds are ellipsoid, light to 
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reddish brown, and 0.3–0.5 mm long. The chromosome number of Arabidopsis thaliana is 

2n=10 (Al-Shehbaz and O'Kane, 2002). 

 

According to Gledhill (2002), the name of the genus Arabidopsis means Arabis-resembling 

because these plants resemble those from another closely related genus Arabis. The 

»thaliana« adjective originates from the surname of the German botanist Johann Thal from 

the 16
th

 century.  

 

A. thaliana has one of the smallest genomes among plants. It consists of 157 million base 

pairs and comprises of five chromosomes (Bennett et al., 2003). The smallness of the 

genome makes it very suitable for genome mapping or sequencing. Its life cycle is short; it 

takes about eight weeks from germination to a mature plant for laboratory varieties such as 

‘Columbia 1’. The small size of the plant is convenient for cultivation in a limited space 

and a single plant can produce several hundred seeds. Due to all of these characteristics, 

Arabidopsis thaliana is very suitable as a model organism.  

2.2 ESCHERICHIA COLI  

Escherichia coli belongs to the superkingdom Bacteria, phylum Proteobacteria, class 

Gammaproteobacteria, order Enterobacteriales, family Enterobacteriaceae, and genus 

Escherichia (NCBI – taxonomy Escherichia coli, 2013).  

 

Escherichia coli cells are short, straight Gram-negative bacilli that are non-sporulating, 

usually motile with peritrichous flagella, often fimbriate and occur singly or in pairs in 

rapidly growing liquid cultures. A capsule or microcapsule is often present and a few 

strains produce and profuse polysaccharide slime. E. coli is a facultative anaerobe, capable 

of a fermentative and respiratory metabolism. Its optimum growth temperature is 37° C 

and it grows readily on a wide range of simple culture media and on simple synthetic 

media (Sussman, 1997). It is widely used in biology as a model organism. As many other 

species of bacteria, E. coli possesses the ability to transfer DNA via bacterial conjugation, 

which may be due to chromosomal- or plasmid-borne properties, and allows genetic 

material to spread horizontally through the E. coli donor population to recipient 

populations of the same or other species of bacteria (Sussman, 1997).  

2.3 AGROBACTERIUM TUMEFACIENS  

2.3.1 Taxonomy  

Agrobacterium tumefaciens belongs to the superkingdom Bacteria, phylum Proteobacteria, 

class Alphaproteobacteria, order Rhizobiales, family Rhizobiaceae, and group 

Rhizobium/Agrobacterium (NCBI – taxonomy browser Agrobacterium tumefaciens, 2013). 

The genus Agrobacterium is subdivided into three groups (biovars) based on various 

physiological characteristics (Keane et al., 1970; Kerr and Panagopoulos, 1977). 

 

The taxonomy of the genus Agrobacterium is complicated and the classification has 

derived mostly from pathogenicity traits, i.e., the ability of bacteria to induce tumours in 
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plants. The genus Agrobacterium is closely related to Rhizobium, a genus of bacteria 

capable of nitrogen fixation and nodule formation at the roots of legume plants. For both 

genera, their distinctive generic characteristics are now thought to be merely the result of 

the presence or absence of interchangeable conjugative plasmids that confer specific 

oncogenic or nodule-forming capabilities (Young, 2008). Hooykaas et al. (1977) proved 

the transfer of the Ti plasmid from a mutant strain of A. tumefaciens to a strain of 

Rhizobium, which was then capable of causing tumours in plants. Conversely, Van Veen et 

al. (1989) proved that not all the members of Rhizobiaceae family become tumourigenic 

upon acquisition of a Ti plasmid. They introduced the Ti plasmid from Agrobacterium 

tumefaciens to Sinorhizobium meliloti but the latter failed to induce tumours (Van Veen et 

al., 1989). 

 

Young et al. (2001) proposed to incorporate all members of the genus Agrobacterium into 

the genus Rhizobium, based on the resemblance of 16S rRNA sequences. Some authors 

opposed this idea: Farrand et al. (2003) argued that at least some biovars of Agrobacteria 

exhibit phenotypic characteristics and also differences in their genome structure and 

chromosomes that clearly set them apart from the other members of Rhizobiaceae. The 

biovar I agrobacteria seem to form a distinctive group, different from Rhizobium as well as 

from the other two Agrobacterium biovars (Holmes and Roberts, 1981; de Lajudie et al., 

1994). The genome structure of biovar I agrobacteria and species Agrobacterium rubi 

consist of two chromosomes, one circular and one linear, whereas the other members of the 

Rhizobiaceae family carry one or two circular chromosomes (Jumas-Bilak et al., 1998). 

Furthermore, the chromosomes of Rhizobium spp. and Sinorhizobium meliloti contain 

characteristic genetic elements called rhizobium-specific intergenic mosaic elements - 

RIME not present in the prototypical biovar I Agrobacterium tumefaciens strain C58 

(Østerås et al., 1995). 

 

Despite the fact that there is no agreement about the taxonomy of Agrobacterium and 

Rhizobium species, the name Agrobacterium is widely used in on-going literature reporting 

on the biology or applications of this genus. The name A. tumefaciens is used for bacteria 

that cause crown gall disease, while A. rhizogenes for those causing hairy root disease. The 

name A. radiobacter is commonly used for non-pathogenic species (Young, 2008). 

2.3.2 Agrobacterium-mediated transformation 

Agrobacterium and related species are currently the only known organisms capable of 

interkingdom gene transfer. The ability of Agrobacterium to transport its own DNA to a 

foreign cell and integrate it into the host’s genome is based on a complex secretion system 

and a diverse molecular integration system which enable Agrobacterium to transfer DNA 

to a broad group of organisms. It has been proven that Agrobacterium can transform 

cereals (Chan et al., 1992; Cheng et al., 1997; Tingay et al., 1997), members of the 

Brassica family (Curtis and Nam, 2001; Metz et al., 1995; Quing et al., 2000; Bartholmes 

et al., 2007), and other Angiosperms (Wroblewski et al., 2005; De Bondt et al., 1994.), 

different species of Gymnosperms (Humara et al., 1999; Leeve et al., 1997; Wenck et al., 

1999), liverworts (Ishizaki et al., 2008), fungi (de Groot et al., 1998; Pardo et al., 2002; 

Kemppainen et al., 2005; Sugui et al., 2005), the Gram-positive bacterium Streptomyces 

lividans (Kelly and Kado, 2002) and even animal cells. Kunik et al. (2001) proved that A. 
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tumefaciens can lead to a stable genetic transformation of human HeLa cells and Bulgakov 

et al. (2006) used an A. tumefaciens-mediated transformation (Atmt) approach to 

successfully transform sea urchin embryos.  

2.3.3 The mechanism of Agrobacterium-mediated transformation 

2.3.3.1 Molecular basis of plant cell transformation 

The molecular basis of plant cell transformation by Agrobacterium is the transfer of T-

DNA from the bacterium to the plant and its integration into the plant’s nuclear genome 

(Chilton et al., 1977). The transferred DNA (T-DNA) is a part of the bacterium's Ti 

plasmid and is referred to as the T-region (Barker et al., 1983).  

 

T-regions are flanked by highly homologous 25-bp long T-DNA border sequences 

(Jouanin et al., 1989; Yadav et al., 1982) which are the targets of the VirD1/VirD2 border-

specific endonuclease which processes T-DNA from the Ti plasmid (De Vos and 

Zambryski, 1989; Filichkin and Gelvin, 1993). The right borders (RBs) are more important 

than the left ones (LBs) because they are the primary target for the VirD1/VirD2 

endonuclease and also become covalently attached to VirD2 (Hepburn and White, 1985; 

Jen and Chilton, 1986; Wang et al., 1984). VirD2 nicks the double stranded T-DNA 

molecule at both the RB and LB sides and by doing so releases a single-stranded molecule 

termed T-strand, and attaches to its 5' end (Filichkin and Gelvin, 1993; Durrenberger et al., 

1989; Herrera-Estella et al., 1988; Howard at al., 1989). In many cases, so-called 

‘overdrive’ sequences appear near the right borders and enhance the transmission of T-

strands to the cells (Van Haaren et al., 1989, 1987; Peralta et al., 1986).  

 

Proteins encoded by vir genes play an essential role in the Agrobacterium-mediated 

transformation process (Zupan et al., 2000; Tzfira et al., 2000; Christie, 1997; Pitzschke 

and Hirt, 2010) (Figure 1). The two-component signal-receiving kinase, VirA, senses the 

presence of plant phenolic compounds released on wound sites, as well as 

monosaccharides and acidic pH (Turk et al., 1994; Stachel and Zambryski, 1986; Lee et 

al., 1995). VirA phosphorylates the response regulator VirG with the aid of the ChvE 

transporter or phenolics (Jin et al., 1990a; Jin et al., 1990b). Phospho-VirG binds itself to 

all vir operon promoters and activates the level of the transcription of the vir genes (Pazour 

and Das, 1990).  

 

The type IV secretion system, which is necessary for the transfer of the T-DNA complex, 

consists of VirD4 and 11 VirB proteins (Christie, 1997; Vergunst et al., 2000). The VirB 

proteins form a membrane channel or serve as ATPases that provide energy for the export 

process (Figure 3), whereas VirD4 probably serves as a linker to promote the interaction of 

the processed T-DNA/VirD2 complex with the VirB-pore. VirB proteins are also important 

because they form a T-pilus (mainly comprised of VirB2), which probably provides a 

channel for the T-DNA complex transfer or docks the bacterium to the plant cell (Hamilton 

et al., 2000; Lai and Kado, 1998; Sagulenko et al., 2001; Eisenbrandt et al., 1999). VirE2 

also plays an essential role in the transformation as it is a single-strand DNA binding 

protein that decorates the T-DNA strand, either in the bacterium or in the plant cytoplasm 
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(Anand et al., 2007; Gelvin, 2003). Both VirD2 and VirE2 protect the T-DNA strand from 

nucleolysis and guide it through the VirB-pore into the plant cytoplasm and then the 

nucleus. Nuclear targeting is aided by the lysine-rich nuclear localization signals that both 

VirD2 and VirE2 harbour, while plant proteins also play a role in the T-DNA integrity and 

transfer (karyopherins, cyclophilins) (Ballas and Citovsky, 1997; Lacroix et al., 2004; 

Deng et al., 1998; Tzfira and Citovsky, 2002). In the plant nucleus, the T-DNA complex is 

stripped from VirE2, and with VirD2 remaining attached to the very end, it engages in 

illegitimate recombination with the plant chromosome. Bacterial chromosomal genes are 

also essential for transformation. They include genes for polysaccharide production, 

modification, and excretion (attachment att genes), and may also play a minor role in the 

transformation process (Citovsky et al., 1994; Ziemienowicz et al., 2001; Zupan et al., 

1996; Gelvin, 2003).  

 

Figure 1: The schematic representation of interactions between the plant and the Agrobacterium cell. The 

wound of the plant cell induces signals (1) which activate the VirA/G proteins (2). The next step is T-DNA 

synthesis and vir gene expression in the Agrobacterium cell (3). Vir proteins and T-DNA are then transferred 

into the host cell trough a type IV secretion system (T4SS) (4). The T-DNA-vir protein complex then enters 

the cell nucleus (5) where it becomes integrated into the host’s genome (6) (Pitzschke and Hirt 2010).  

2.3.3.2 Bacterial secretion systems 

Many bacterial species exploit specialized secretion systems to transfer macromolecules 

across membranes. These secretion systems are assembled into six major groups, named 

types I, II, III, IV, V, and VI (Thanassi and Hultgren, 2000; Henderson et al., 2004; 

Mougous et al., 2006). The secretion systems ancestrally related to the bacterial 

conjugation machinery are referred to as the type IV secretion systems (T4SSs) (Lawley et 

al., 2003; Christie et al., 2005) (Figure 2). The T4SSs are unique among other bacterial 
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secretion system types due to their ability to transfer both proteins and nucleoprotein 

complexes (Juhas et al., 2008).  

 

 
 
Figure 2: The schematic representation of the bacterial conjugation. The large subfamily of T4SS are 

conjugation systems which process the conjugative transfer of DNA from the donor to the recipient cell (A). 

The contact between the cells is usually mediated by a pilus-like structure (B). A single strand (ssDNA) of 

the mobile genetic element is transferred from the donor to the recipient bacteria with the help of the relaxase 

(C). The recipient and donor cells synthesise the complementary DNA strands and the former recipient 

bacterium becomes a potential donor of the mobile DNA (D) (Juhas et al., 2008). 

2.3.3.3 Type IV secretion system (T4SS) 

The mechanism of Agrobacterium-mediated insertion of DNA into the plant genome has 

been studied in detail and shows remarkable similarity to the bacterial conjugation process 

and the nucleoprotein transfer via the type IV secretion system (Lessl et al., 1992; 

Scheiffele et al., 1994; Schmidt-Eisenlohr et al., 1999; Christie, 1997; Zupan and 

Zambryski, 1995; Christie and Alvarez-Martinez, 2009; Juhas et al., 2008). Based on a 

number of features, T4SSs have been divided into several groups. Types F and P (type 

IVA) of T4SSs resembling the archetypal VirB/VirD4 system of Agrobacterium 

tumefaciens are considered to be the paradigm of type IV secretion (Juhas et al., 2008). 

Originally, the T4SSs were divided into three types, F, P, and I, named after the 

incompatibility group of the representative conjugative plasmids, IncF (plasmid F), IncP 

(plasmid RP4), and IncI (plasmid R64) respectively (Lawley et al., 2003). In the alternative 
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classification schemes, types F and P have been grouped together as type IVA systems, 

which resemble the archetypal VirB/VirD4 system of Agrobacterium tumefaciens. Type I, 

which varies significantly in its component modules from members of both F and P types, 

was named as the type IVB system. Genetic determinants of the type IVB systems are 

related to the archetypal Dot/Icm system of Legionella pneumophila. A third group in this 

classification scheme, composed of all the other known T4SS representatives that bear 

only limited or no homology to IVA and IVB system, has not been well characterized 

(Christie et al., 2005).  

 

Type IV secretion systems are multisubunit molecular structures which span over the cell 

membranes. They have a secretion channel and often a pilus or other filamentous protein 

structure (Juhas et al., 2008). Conjugation systems, including the one encoded by the F 

plasmid, represent a large subfamily of the T4SSs and are used by bacteria in the process 

of the conjugative transfer of DNA from donor to recipient cells (Juhas et al., 2008). A. 

tumefaciens hosts two T4SSs (both encoded on the Ti plasmid): one determining inter-

bacterial transfer of the Ti plasmid (tra system), and one determining bacterium-to-plant 

gene transfer (vir system). The mating-pair formation component of the vir T4SS is 

encoded by an approximately 10 kb virB operon comprising 11 open reading frames and a 

separate virD4 gene, while other vir components acting on donor DNA processing or vir 

gene regulation lie also in close proximity on the Ti plasmid. Of the 11 VirB protein 

determinants, proteins VirB2 and VirB5 are pilus components, VirB3 and VirB7 are pilus-

associated proteins, VirB4 and VirB11 are nucleoside triphosphatases that provide energy 

for transfer, while VirB6, VirB7, VirB8, VirB9 and VirB10 constitute components of the 

transmembrane channel (Figure 3) (Juhas et al., 2008). 

 

 
 
Figure 3: The schematic model of the vir T4SS in A. tumefaciens. The system is composed of several 

subunits which span over the cell membrane. The structure consists of 11 VirB proteins (VirB1–VirB11) and 

VirD4. The nucleoside triphosphatases that provide energy for the transfer are coded with yellow colour, 
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components of the transmembrane channel are shown in blue, pilus-forming components in red, and lytic 

transglycosylase responsible for the degradation of the murein (peptidoglycan) layer at the site of assembly in 

green (Juhas et al., 2008). 

2.4 VECTORS FOR PLANT TRANSFORMATION 

Agrobacterium-based plasmid vectors allow the transformation of a wide range of plant 

species by taking advantage of a natural bacterial system to introduce DNA into the 

nuclear genome of plants. As mentioned before, Agrobacterium inserts a part of its DNA, 

the T-DNA, into the nuclear genome of the host plant. The genes which are necessary for 

T-DNA transfer and the T-DNA itself lie on the tumour-inducing Ti plasmid. The T-DNA 

is bordered by 25 bp repeats (RB and LB) and its delivery into the host cell is mediated by 

the vir genes. The bacterial T-DNA contains the plant phytohormone synthesis genes that 

induce tumour formation, as well as opine synthesis genes, which, even though they are of 

bacterial origin, have evolved to function only in the eukaryotic nucleus. The removal of 

all the genes within the T-DNA does not impede the ability of Agrobacterium to transfer 

DNA, but it does prevent the formation of tumours. The Ti plasmids that are no longer 

oncogenic are termed ‘disarmed’. The two main components for a successful 

Agrobacterium-mediated gene transfer, T-DNA and the vir region, can reside on separate 

plasmids called binary Ti vector systems. The vir gene functions are provided by the 

disarmed resident Ti plasmid of the Agrobacterium strain. The T-DNA, where the genes to 

be transferred are located, is provided on a small shuttle vector that can replicate in both E. 

coli and A. tumefaciens. The shuttle vector must carry the selectable markers appropriate 

for selection in E. coli and A. tumefaciens (Hellens et al., 2000).  

 

A recently proposed promising transient expression system in the plant cell relies on 

Agrobacterium-mediated gene transfer (Atmt) technology and recruits viral replicons for 

gene expression (Marillonnet et al., 2004 and 2005). This technology combines the 

advantages of three biological systems – the transformation efficiency of A. tumefaciens 

used for viral replicon transfection, the high expression yields obtained with viral vectors 

and the post-translational capabilities of plants. The wider applicability of this method in 

stable transgenic technology remains to be proven.  

2.5 TRANSFER OF GENES INTO PLANTS 

There are two major ways to transfer genetic material into plant cells: via direct gene 

transfer and via Agrobacterium-mediated gene transfer (Atmt). Recently, Broothaerts et al. 

(2005) reported success in plant transformation with the use of other members of the 

Rhizobiales and with the technology and vectors developed for Atmt. However, despite 

offering proof-of-principle, this method is not yet routinely used.  

2.5.1 Direct gene transfer 

The most popular direct methods of gene transfer are electroporation (He et al., 2001; 

D'Halluin et al., 1992; Zhang HM et al., 1988; Laursen et al., 2004), the use of 

polyethylene glycol (PEG) as a DNA precipitant (Hayashimoto et al., 1990; O'Neill et al., 

2005; Golds et al., 1993), the biolistic method (Wright et al., 2001; Li et al., 1992; Perl et 
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al., 1992; Hartman et al., 1994; Jain et al., 1996; Zhong et al., 1993) and ultrasonication 

(Zhang L-J. et al., 1991; Zhang H., et al. 1997). The use of ultrasound is sometimes 

combined with the Agrobacterium-mediated gene transfer in order to improve the 

transformation efficiency (Trick and Finer, 1997; Humara et al., 1999). Some other direct 

gene transfer methods were published, but have not become widely used are silicon 

carbide-mediated transformation (Kaeppler et al., 1991), electroporation of intact cells and 

tissues, electrophoresis, microinjection, the pollen-tube pathway method, and the use of 

liposomes (Rakoczy-Trojanowska, 2002). The downside of direct gene transfer techniques 

is that they can be used almost exclusively for transformation of plant cells or tissues. 

Additionally, the entry of unnaturally large numbers of DNA fragments into the cell 

nucleus (as is usually the case with direct gene transfer technology) often leads to host 

responses that involve gene silencing or inactivation (Vaucheret et al., 1998; Wassenegger 

et al., 2004; Stam et al., 1997a; Stam et al., 1997b). Lastly, not all plant species can be 

transformed by direct techniques.  

2.5.2 Agrobacterium-mediated gene transfer methods 

2.5.2.1 Agrobacterium-mediated transfer to cell lines, protoplasts, and tissue cultures 

Agrobacterium-mediated transfer to cell lines, protoplasts, and tissue cultures is a standard 

technique for obtaining genetically modified plants. This technique is suitable for 

transformation of a wide variety of different plant species from garlic (Allium sativum L.) 

(Kondo et al., 2000), Medicago varia (Deak et al., 1986), citrus fruit (Vardi et al., 1990), 

plants of the Poaceae family like rice (Hiei et al., 1997; Kyozuka et al., 1987; Lin and 

Zhang, 2005), barley (Tingay et al., 1997), and tall fescue (Festuca arundinacea Schreb.; 

Gao et al., 2008), to lilies (Hoshi et al., 2003), poplar (Fillatti et al., 1987), and bananas 

(Ganapathi et al., 2001) and others.  

 

Agrobacterium-mediated transfer has some advantages over the direct gene transfer. 

Travella et al. (2005) compared Agrobacterium-mediated and particle bombardment 

transfer in barley in terms of transformation efficiency, transgene copy number, 

expression, inheritance, and physical structure of the transgenic loci. The efficiency of 

Agrobacterium-mediated transformation was double compared with the particle 

bombardment and Agrobacterium-derived lines integrated a lower copy number of 

transgenes. The integrated T-DNA of Agrobacterium-mediated transformation was more 

stable and transgene silencing, which was frequently detected in the T1 populations of the 

bombardment-derived lines, was not observed.  

  

Later, Gao et al. (2008) performed a similar experiment with another member of the 

Poaceae family, the tall fescue (Festuca arundinacea Schreb.). They compared the 

transformation efficiency, the transgene integration, and the expression of the bar and GUS 

genes. The average transformation efficiency across the callus lines used in the 

experiments was almost the same for Agrobacterium-mediated transformation as for 

particle bombardment. However, while GUS activity was detected in leaves of 53  % of the 

Agrobacterium-transformed lines, only 20  % of the bombarded lines showed GUS 

activity.  
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2.5.2.2 In planta Agrobacterium-mediated gene transfer methods  

In planta Agrobacterium-mediated gene transfer methods were developed to circumvent 

the need for isolation of plant cells and tissues and the need to prepare plant cell cultures. 

Apart from the fact that growing plants is much easier than growing cultures and the 

hands-on time needed is much shorter, in planta methods are much less susceptible to 

fungal contaminations and somaclonal variation. Except for seed-transformation processes 

that hold wider promise (see 2.5.2.2.1), whole-plant transformations are as yet mostly 

confined to Arabidopsis and its relatives, and have only recently been tested for other 

similarly easy-to-manipulate plants (i.e., cereals; 2.5.2.2.4). 

2.5.2.2.1 Transformation of germinating seeds 

The first report of in planta transformation was written by Feldmann and Marks in 1987. 

Germinating seeds of A. thaliana were co-cultivated with an A. tumefaciens strain carrying 

a Ti plasmid with a T-DNA gene encoding for kanamycin/G418 resistance.  

 

The seeds were shaken in liquid BM medium and exposed to constant light. After this 

treatment, the overnight culture of A. tumefaciens was added and left for co-cultivation for 

24 hours. The treated seeds were spread on vermiculite with a nutrition solution to help 

them grow. After T1 plants reached maturity, T2 seeds were collected and spread on 

selective plates containing kanamycin. Four out of six different treatments yielded 

observable transformants and the highest rate of transformants was 0.32  %.  

 

The method was later used for the transformation of Arabidopsis (Feldmann, 2005; Castle 

et al., 2004) and other plant species such as soybean (Chee et al., 1989) and Medicago 

truncatula (Trieu et al., 2001).  

2.5.2.2.2 In planta transformation of wounded plants 

Katavic et al. (1994) reported another technique which does not require a tissue culture: the 

transformation of wounded Arabidopsis plants. Arabidopsis plants were grown in pots and 

when the primary inflorescence shoots reached the height of 1-2 cm, they were cut off 

together with some rosette leaves. The wounds were inoculated with overnight 

Agrobacterium culture. When secondary bolts appeared (7-10 days after the first cut), the 

procedure was repeated. Plants were then grown to maturity; their seeds were collected and 

spread on a selective medium to screen for transformants. The researchers inoculated 1440 

T0 plants, 95 of which yielded kanamycin-resistant T1 seedlings.  

2.5.2.2.3 Vacuum infiltration of plants 

The next step in developing in planta transformation was the introduction of the vacuum 

infiltration of whole plants, developed by Bechtold, Ellis, and Pelletier (1993): the 

Agrobacterium culture was grown to the final OD600=0.8 in liquid LB medium with 

appropriate antibiotics. The culture was then centrifuged and the pellet was re-suspended 

in the infiltration medium (MS macro and micro nutrients, 6-benzylaminopurine and 5  % 

sucrose) at one third of the initial culture volume. Three- to four-week-old plants were 

taken out of the soil, rinsed with water, immersed in the infiltration medium containing the 
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Agrobacterium culture carrying the bar resistance gene as a selective marker, and put in a 

vacuum chamber. These plants were in the vacuum for 20 minutes. After the vacuum 

treatment they were planted into new soil and covered with plastic wrap for two days. 

Mature seeds were harvested and the transformed seedlings were selected to be grown on 

sand in a greenhouse, irrigated with water containing the herbicide Basta. With this 

technique they managed to obtain up to 5 transgenic seeds per inoculated plant.  

2.5.2.2.4 Floral dip method 

Clough and Bent (1998) developed an even simpler method by replacing the vacuum step 

with a versatile dip of the whole plant into a bacterial solution containing surfactant. 

Arabidopsis plants were grown in pots in a greenhouse; primary inflorescences were 

clipped to encourage the emergence of secondary bolts. The Agrobacterium tumefaciens 

strain was grown to the stationary phase in liquid LB medium in a shaking incubator (250 

rpm, 25 to 28° C). The cells were harvested by centrifugation (5,500 g, 20 min, at room 

temperature), and then re-suspended in an infiltration medium to a final OD600 of 0.8. 

Clough and Bent tested different concentrations of infiltration media components and then 

developed a protocol for the floral dip. The transformation frequency of around 1  % can 

be routinely obtained by this method. The primary target of A. tumefaciens in the floral-dip 

method is the female reproductive tissue of A. thaliana (Figure 4) (Desfeux et al., 2000). 

The T1 transformants are typically hemizygotous, carrying T-DNA at one of the two alleles 

of the given locus (Bechtold et al., 1993).  

 

 

 
Figure 4: The GUS expression in ovules/developing seeds of Arabidopsis thaliana. The left photograph (A) 

shows a staining of an entire locule cavity, likely due to bacterial GUS expression from Agrobacterium 

colonizing the locule interior. The right photograph (B) shows an elongating seed pod from a fertilized 

flower (Desfeux et al., 2000).  

 

The floral dip method was also successfully used for the transformation of shepherd's purse 

(Capsella bursa-pastoris) (Bartholmes et al., 2007), radish (Raphanus sativus L. 
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longipinnatus Bailey) (Curtis and Nam, 2001), and recently even for wheat (Triticum 

aestivum) (Zale et al., 2009). 

2.5.2.2.5 Improvements and alterations of the floral dip method 

Chung et al. (2000) developed an alteration of the floral dip method – the floral spray 

method, where bacterial culture is sprayed onto flowers. It was successfully used for 

generating transgenic Arabidopsis and could also be used for generating transgenic plants 

from plant species too big to be dipped (Chung et al., 2000). The transformation efficiency 

of the floral spray can reach up to 11  % (Ye, personal information, 20 October 2008). 

Martinez-Trujillo et al. (2004) reported a successful transformation and an improved 

transformation efficiency for Arabidopsis, reached by the drop-by-drop inoculation of 

dense Agrobacterium culture (OD600<2.0). In 2006, Logemann et al. reported a simplified 

method for preparing Agrobacterium cells for the floral dip. Cells were grown on a solid 

YEB medium instead of the liquid medium. The storage of bacteria plates in a refrigerator 

for up to one week did not noticeably reduce the transformation efficiency, since the 

number of transformants obtained using such bacteria was nearly the same as in liquid-

grown cultures. The method allows the storing of bacterial cultures for the transformation 

until plants reach an optimal growing stage. Davis et al. (2009) developed a direct dip 

protocol for Arabidopsis: Agrobacterium cells were grown in a specific medium (YEBS). 

When the culture reached the appropriate density, the surfractant Silwet
®
 L-77 was added 

and the plants were dipped into this solution. This method reduces the need for preparing 

an infiltration medium and the need for the centrifugation of the cells. The direct dip 

method was also successfully used for simultaneous transformation with two 

transformation vectors (Davis et al., 2009).  

2.5.2.2.6 Plant transformation by co-inoculation 

Plant transformation by co-inoculation with a disarmed A. tumefaciens strain and an E. coli 

strain carrying mobilizable transgenes was first reported by Pappas and Winans in 2003. 

The molecular mechanism of T-DNA transfer in Agrobacterium exhibits a striking 

similarity to the conjugal transfer of broad-host range plasmids in-between bacterial 

species (Lessl et al., 1992; Scheiffele et al., 1994; Schmidt-Eisenlohr et al., 1999) and this 

fact encouraged the researchers to investigate the possibility of plant transformation with 

E. coli used as a transgene host.  

 

Pappas and Winans (2003) first tried to transform tobacco leaf explants with E. coli strains 

harbouring IncP-type and IncN-type tra systems, but except for one rare instance of an 

IncN- derived callus failing to differentiate, the majority of these efforts was without 

success. They then introduced another plasmid that expresses VirE proteins, which, 

together with all other T4SS components, are specifically required in the Agrobacterium-

to-plant DNA transfer. In the case of the IncP system, they detected some slow-growing 

calli, but again these calli proved to be abortive, since they failed to grow in subsequent 

transfers in the selective medium. They also inoculated two separate E. coli strains with 

IncP tra genes, one expressing the VirE2 protein and the other the nptII (kan
r
) transgene, 

and again they rarely detected the slow-growing, abortive calli. Because it seemed possible 

that the conjugation systems in E. coli are able to transfer T-DNA but not the VirE protein, 
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they co-inoculated leaf explants with an E. coli harbouring the nptII gene and a disarmed 

A. tumefaciens as a donor of VirE. The use of the IncN system proved to be efficient and 

they detected an average of two calli per leaf strip, but the frequency of this transformation 

was 30 to 40 times lower than the control transfer of the nptII gene from A. tumefaciens. 

To determine whether the plant received the nptII gene directly from E. coli or via 

Agrobacterium tumefaciens, they used a mutated virD
-
 A. tumefaciens strain, which lacks 

the ability to process T-DNA but retains all other vir functions. This experiment yielded no 

results, which indicates that E. coli itself is not able to successfully transform plant tissue. 

The shuttle vector that carries the kanamycin resistance transgene is conjugally transferred 

from E. coli to A. tumefaciens which acts as a recipient in the process, and then from A. 

tumefaciens to the plant cell via standard vir–mediated T-DNA transfer. This co-

inoculation principle was in turn used for the transformation of A. thaliana by floral dip 

(Koumpena et al., 2008). Here, between A. tumefaciens strains EHA101 and GV3101, the 

latter proved to be optimal for A. thaliana transformation, and also proved an excellent 

recipient of the binary vector in matings with E. coli donors. The overall transformation of 

A. thaliana for the nptII marker by the bacterial co-infection technique described was 

relatively low (0.004  %). However, it improved markedly upon bacterial pre-mating prior 

to infection; this was tested only in the case of EHA101. The frequencies of E. coli – A. 

tumefaciens conjugal matings, directly affecting the subsequent transformation success, 

were amenable to enhancement via modifications in temperature, donor-recipient ratios, as 

well as the medium and the duration of incubation. This was the first report implicating E. 

coli as an in planta transformation vector in plant transgenic technology. Together with the 

previously mentioned leaf-explant transformation route, it is a method that it simplifies 

strain construction procedures and provides better maintenance of large and unstable DNA 

fragments in the course of their transfer to the plant. 

2.5.3 Non-Agrobacterium-mediated gene transfer  

The researchers of Agrobacterium face a serious problem of patent and intellectual 

property rights, which create an obstacle for the use of Agrobacterium-based techniques in 

plant biotechnology. In order to avoid the use of patented Agrobacterium strains, attempts 

were made to transform plants with other species of bacteria. Broothaerts et al. (2005) used 

Sinorhizobium meliloti, Rhizobium sp., and Mesorhizobium loti to transform tobacco leaf 

discs, rice, and A. thaliana. T-DNA based binary vectors, a disarmed Ti plasmid pEHA105 

from a hypervirulent Agrobacterium strain, and a pCAMBIA1105 were introduced into the 

non-Agrobacterium strains. S. meliloti was proven to be competent to transfer genes into 

monocots and dicots, and into a range of tissues (leaf tissue, immature ovules, and 

undifferentiated calli). They obtained positive results also with Rhizobium sp. and 

Mesorhizobium loti. Although the transformation ratios were much lower than those 

obtained with Agrobacterium as a control, the use of alternative bacterial species is a 

promising approach in plant biotechnology.  

2.6 SELECTION OF TRANSFORMANTS AND STERILIZATION TECHNIQUES 

The crucial part of floral dip technique is sterilization and selection of the transgenic seeds. 

The mature seeds are collected when the inoculated plant is completely dry, that is 4–6 

weeks after the dipping procedure. Dry seeds and plants are covered with agrobacteria 
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which remained from the floral dip and with normal bacterial and fungal flora of the plant, 

as well as air-borne bacteria and fungi from the environment. When placed onto selective 

plates these microorganisms may overgrow plantlets and destroy them.  

 

Most of the authors use liquid sterilization of seeds. In general, seeds are first washed with 

ethanol, then with sodium hypochlorite (bleach), with the addition of the detergent Tween, 

and rinsed several times with sterile water. The concentrations of sterilization agents and 

the duration of exposure are very variable: Clough and Bent (1998) used 95 % (v/v) 

ethanol for 0.5–1 min, and then 50  % bleach in sterile water (v/v) + Tween 20 (0.05  %) 

(v/v) for 5 min. Zhang et al. (2006) used 70  % (v/v) ethanol for 1 min, 50  % (v/v) bleach 

+ Tween 20 (0.05 %) (v/v) for 10 min. Martinez-Truillo et al. (2004) used 95 % (v/v) 

ethanol for 10 min, 6 % (v/v) chlorine solution + Tween 20 (0.1 %) (v/v) for 15 min. 

Desfeux et al. (2000) used isopropanol instead of ethanol for liquid sterilization. Another 

technique for sterilization of Arabidopsis seeds is vapour sterilization: seeds are sterilized 

in the vapour of a mixture consisting of 100 ml bleach and 3 ml of glacial HCl for 4–15 

hours (Desfeux et al., 2000).  

 

The selection of transformants is usually carried out on agar selective plates with 

appropriate selection agents in favour of transgenic seeds and against contaminating 

bacteria, and takes 7 to 10 days (Clough and Bent, 1998; Zhang et al., 2006; Desfeux at al., 

2000). Harrison et al. (2006) developed a rapid method for identifying the transformed 

seedlings of Arabidopsis, shortening the selection time to less than 4 days. Sterilized seeds 

are placed on selective plates, left in the refrigerator at 4° C for 2 days for stratification, 

and then for 4–6 hours at 22° C in continuous light in order to stimulate germination. The 

plates are then wrapped in aluminium foil for two days and then transferred to continuous 

light (or 16 hours light / 8 hours dark regime) for 1 to 2 days.  

 

Davis et al. (2009) developed a protocol for the selection of transgenic plants on quartz 

sand or on silicon dioxide sand instead of the solid growth medium. This protocol does not 

require the sterilization of seeds and lowers the possibility of fungal contamination.  
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3 MATERIALS AND METHODS  

3.1 PLANT MATERIAL AND GROWING CONDITIONS  

The seeds of Arabidopsis thaliana ecotype Columbia 1 were treated in water in a 

refrigerator (4° C) overnight for imbibition. The next day they were sown in small pots, in 

either sterilized or non-sterilized soil, and covered with a plastic dome to maintain 

humidity. The conditions in the growing chamber were as follows: temperature 21° C, 

relative humidity 60-70 %, 16 hours of light and 8 hours of darkness. After 5–7 days, when 

they reached the stage of two leaves (Figure 5), they were replanted into new pots, 4 plants 

per pot (Figures 6 and 7). The first generation (7 October 2008) was planted in commercial 

soil substrate Florrela green with 10 % (v/v) of added perlite. The 17 December 2008 and 

all later generations were planted in a substrate Potground P Klasmann. The substrate was 

not sterile and was without perlite. The 12 January 2009 and later generations were planted 

in Potground P Klasmann soil which was sterilized in an autoclave for 20 min. The 

sterilisation was employed to destroy insects and fungi present in the substrate which 

might be harmful to the plantlets.  

3.2 INOCULATION EXPERIMENTS  

The first inoculation of the plants took place when the bolts were 2–10 cm high, with few 

open flowers – that was approximately 30 days after planting (Figure 8 and Table 1). This 

is the most appropriate stage for the first floral dip. For higher efficiency, we repeated the 

dip after 5 or 6 days (Clough and Bent, 1998). The first generation (Experiment 1) and the 

sixth generation (Experiment 8) were reinoculated twice. The first reinoculation was 3 

days after the initial inoculation and the second one four days after the first reinoculation in 

the first generation (Experiment 1) and in the sixth generation (Experiment 8) the first 

reinoculation was after five days and the second one after 10 days. The exact dates of the 

experiments are presented in the Table 1.  

 

 
 

Figure 5: A. thaliana var. Columbia 1 plants in the stage of two leaves, just before replanting. 

Slika 5: Rastline A. thaliana var. Columbia 1 v stadiju dveh listov, tik pred presajanjem.  
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Figure 6: A. thaliana var. Columbia 1 plants in the stage of two leaves, after replanting.  

Slika 6: Rastline A. thaliana var. Columbia 1 v stadiju dveh listov, po presaditvi. 

  

 
 

Figure 7: A. thaliana var. Columbia 1 plants in different growing stages. The plants at the front of the photo 

are 14 days old, those in the middle tray are one week older, and those at the rear are two weeks older.  

Slika 7: Rastline arabidopsisa v različnih rastnih stadijih. Rastline v ospredju slike so stare približno 14 dni, 

rastline v sredini tri tedne, rastline v ozadju pa priblližno štiri tedne.  

 

 

 
 

Figure 8: The plants in the most appropriate growth stage for the first inoculation (according to Clough and 

Bent, 1998) – primary bolts are 2–10 cm long, with a couple of open flowers.  

Slika 8: Rastline v stadiju, ki je najbolj primeren za uspešno prvo inokulacijo (Clough in Bent, 1998): 

primarni poganjki so dolgi 2 do 10 cm, nekaj cvetov je že odprtih.  
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3.3 GROWTH OF BACTERIAL STRAINS AND INOCULATION OF PLANTS 

Bacterial strains were grown in liquid cultures as follows: A. tumefaciens was grown at 27° 

C in a shaking incubator (180 rpm) and E. coli at 37° C, left standing to reduce the speed 

of growth and to synchronize with the A. tumefaciens culture. Both bacteria were cultured 

in the LB medium (Bacto-tryptone 10 g/l, Bacto-yeast extract 5 g/l, NaCl 10 g/l, 1.5 % of 

agar for solid medium) with appropriate antibiotics (Table 2). Starting from an inoculum 

size of 10 ml, A. tumefaciens cultures reached the desired OD600 in approximately 24 

hours. Four to six hours before A. tumefaciens reached the desired OD600, the E. coli 

culture was placed into the shaking incubator to synchronize growth with the A. 

tumefaciens culture. Cultures of bacteria in solid media were left to grow for several days 

and then stored at 4° C for further use. We used the E. coli strain DH5α expressing the 

IncN-type conjugation system encoded on plasmid pKM101 and plasmid pKP80 carrying 

the nptII transgene for resistance to kanamycin and the IncN oriT region, which renders 

the plasmid mobilizable by the IncN tra system (Pappas and Winans, 2003). The A. 

tumefaciens strains used were GV3101 and GV3101 with plasmid pKP80.  

 
Table 2: The bacterial species, strains, and antibiotics used in the experiments.  

Preglednica 2: Vrste in sevi bakterij ter uporabljeni antibiotiki.  

 

Species Bacterial strain Antibiotics* 

E. coli DH5α (pKM101)(pKP80) Amp50, Spc100 

A. tumefaciens GV3101 Rif30, Gen40 

A. tumefaciens GV3101 (pKP 80) Rif30, Gen40, Spc100 

 
*Abbreviations: Amp50 – ampicillin 50 µg/ml, Spc100 – spectinomycin 100 µg/ml, Rif30 – rifampicin 30 

µg/ml, Gen40 – gentamycin 40 µg/ml.  

 

Bacterial cultures were used when they reached OD600 0.5–0.8 for E. coli and 0.8–1.2 for 

A. tumefaciens, which is the most appropriate ratio for an efficient conjugation (Koumpena 

et al., 2008). They were centrifuged (5,000 rpm, 15 min) and resuspended in the infiltration 

medium – IM (MS salts 2.2 g/l, B5 vitamins 1ml/l, sucrose 50 g/l, MES 0.5 g/l, agar 4 g, 

pH adjusted to 5.7 with 1N KOH, the medium was sterilized in an autoclave), 200 µl/l of 

surfractant Silwet
®
 L-77 was added afterwards (500 µl/l for the 9 February 2009 

generation of plants). For the experiments with pre-conjugation, GV3101 and DH5α (pKM 

101)(pKP 80) culture cells were centrifuged (5,000 rpm, 15 min), washed with sterile 0.9 

% NaCl (w/v) (to wash away culture antibiotics), mixed together and recentrifuged (5,000 

rpm, 15 min). The cell pellet was resuspended in a small quantity of the LB medium (0.5 

ml) and deposited onto a nitrocellulose filter (45 μm pore size, 5 cm diameter, Millipore) 

lying on a pre-warmed LB plate and left for 4—5 hours at 28° C. After that period, the 

filter was removed and placed in an empty sterile petri plate, the cell paste was scraped 

from the filter and resuspended in the IM of the same volume as that of the agrobacterial 

culture, except for the 26 January 2009 generation experiments, where inocula for dipping 

were concentrated 10- and 100-fold (in addition to non-concentrated control), for the 

specific experiment purposes.  

 

The plants were dipped in the prepared bacterial suspension for 2 minutes (Figure 9), or 

sprayed several times (Figure 11), or inoculated with drops from a pipette, according to the 

assay performed. Dipped plants were gently tilted into a horizontal position and left to blot 
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for a couple of minutes onto Whatman paper to remove the excess of cell suspension from 

all plant parts (Figure 10). They were then raised and inoculated with cell suspension drops 

directly onto the rosette of the plant using a pipette, so as to facilitate the inoculation of 

less protruding developing buds. After the inoculation, the plants were covered with plastic 

domes or plastic bags for 24 hours to prevent drying and were placed into the growing 

chamber (Figure 12). They were reinoculated 5 or 6 days after the first inoculation (Figure 

13) in order to increase the transformation efficiency (Clough and Bent, 1998). The exact 

OD600 values, the modes of inoculation, and the number of inoculated plants are presented 

in Tables 3 and 4. The experiments are designated with abbreviations A+ for inoculation 

with GV3101 (pKP80) as a positive control, A- for inoculation with GV3101 as a negative 

control, E for inoculation with DH5α (pKM 101)(pKP 80) as a negative control, AE for 

inoculation with mixed GV3101 and DH5α (pKM 101)(pKP 80), and AEC inoculation 

with pre-conjugated mixed GV3101 and DH5α (pKM 101)(pKP 80) cultures (Tables 3 and 

4). Detailed inoculation procedures for every experiment are described further on. 

 

 
 
Figure 9: Grown Arabidopsis plants were inverted and their stems dipped for two minutes into the bacterial 

solution which fills a falcon tube (shown placed standing inside the beaker). This figure shows the second 

inoculation 5 days after the first one.  

Slika 9: Nadzemne dele rastlin repnjakovca smo za dve minuti potopili v raztopino bakterij (na sliki se 

raztopina nahaja v epruveti, ki stoji v laboratorijski čaši). Slika prikazuje drugo inokulacijo raslin, ki smo jo 

izvedli pet dni po prvi.  

 

 
 
Figure 10: Dipped plants were gently tilted horizontally and left to drip for a couple of minutes onto 

Whatman paper to remove the excess of cell suspension from all plant parts. 

Slika 10: Rastline smo po potapljanju nežno položili na papirnato krpo, da je odvečna tekočina odtekla.  
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Figure 11: Arabidopsis plants were inoculated by spraying from a distance of 4–5 cm (the procedure was 

repeated several times). The picture shows the first inoculation of one-month-old plants.  

Slika 11: Rastline smovečkrat popršili z razdalje 4-5 cm. Slika prikazuje prvo inokulacijo en mesec starih 

rastlin.  

 

 
 

Figure 12: After the inoculation the plants were covered with plastic bags for 24 hours to keep the high 

humidity.  

Slika 12: Po inokulaciji smo rastline za 24 ur prekrili s plastičnimi vrečkami, ki so zagotavljale primerno 

vlažnost.  

 

 
 

Figure 13: The plants are prepared for the second inoculation, 5 days after the first inoculation. Primary bolts 

are 10 to 15 cm long, secondary bolts are just emerging from the rosette.  

Slika 13: Rastline v stadiju, primernem za drugo inokulacijo, ki smo jo izvedli 5 dni po prvi. Primarni 

poganjki so dolgi 10 do 15 cm, sekundarni pa so tudi že vidni.  
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Table 3: The bacterial cultures and their ODs, the mode of first, second and third inoculation, and the number 

of inoculated plants used in recorded experiments 1, 2, 3, 4, 5, and 8.  

Preglednica 3: Bakterijske kulture, njihova optična gostota, način prve, druge in tretje inokulacije, ter število 

uporabljenih rastlin v poskusih 1, 2, 3, 4, 5 in 8.  

 

continues  

Experiment 

and 

generation 

of plants  

Bacterial 

cultures  

Bacterial 

strains  

Mode 

of 1st  

inocul

ation  

OD600 of  

inoculu

m 

Mode of 

2nd  

inoculati

on 

OD600  

of  

inocul

um 

Mode 

of 3rd  

inocul

ation 

OD600  

of  

inocul

um 

No of 

inoculated 

plants (T0 

generation) 

1st 
experiment  

 

7 October 
2008 

generation 

(1st 
generation) 

 

 

Infective 
Agrobacterium 

as positive 

control (A+) 

GV3101 
(pKP 80) 

Dip 0.81 Drops 
with 

pipette 

1.66 
 

Dip 0.87 8 

Disarmed 

Agrobacterium 

as negative 
control (A-) 

GV3101 Dip 0.97 Drops 

with 

pipette 

1.36 

 

Dip 0.49 8 

Conjugative E. 

coli donor as a 

negative control 
(E) 

DH5α 

(pKM 

101)(pKP 
80) 

Dip 0.76 Drops 

with 

pipette 

0.29 Dip 0.7 12 

Disarmed 

Agrobacterium 
and conjugative 

E. coli co-

infection (AE) 

DH5α 

(pKM 
101) 

(pKP 80) 

+ 
GV3101 

Dip  Drops 

with 
pipette 

 Dip  24 

2nd 

experiment 

 
17 December 

2008  
Generation 

(2nd 

generation) 

Infective 

Agrobacterium 

as positive 
control (A+) 

GV3101 

(pKP 80) 

Dip* 1.19 Dip 1.55   5 

Disarmed 

Agrobacterium 

and conjugative 
E. coli co-

infection after 
conjugation 

(AEC) 

GV3101 Dip 1.18 Dip 1.73   8 

DH5α 

(pKM 

101)(pKP 
80) 

Dip 0.55 

 

Dip** 0.47 

0.38 
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Continuation of Table 3 
Experiment and 

generation of 

plants  

Bacterial 

cultures  

Bacterial 

strains  

Mode of 

1st 

inoculati

on 

OD600 

of 

inocul

um 

Mode 

of 2nd 

inocul

ation 

OD600 of 

inoculu

m 

Mod

e of 

3rd  

inoc

ulati

on 

OD600 

of 

inocul

um 

No of 

inocul

ated 

plants 

(T0 

genera

tion) 

3rd experiment  

6 January 2009 
generation (3rd 

generation) 
 

Infective 

Agrobacterium 
as positive 

control (A+) 

GV3101 

(pKP 80) 

Dip 1.24 Dip 1.10   8 

Disarmed 

Agrobacterium 

and conjugative 

E. coli co-

infection after 
conjugation 

(AEC) 

GV3101 Dip 1.05 Dip 1.11   32 

DH5α 

(pKM 
101)(pKP 

80) 

Dip 0.41 Dip 0.59  

4th experiment 6 

January 2009 

generation (3rd 
generation) 

Infective 

Agrobacterium 

as positive 
control (A+) 

GV3101 

(pKP 80) 

Dip 1.0 Dip 1.10   8 

Disarmed 

Agrobacterium 
and conjugative 

E. coli co-

infection (AE) 

GV3101 Dip 1.19 Dip 1.15   32 

DH5α 

(pKM 
101)(pKP 

80) 

Dip 0.57 Dip 0.65  

5th experiment  
12 January 2009 

generation 

(4th generation) 

Infective 
Agrobacterium 

as positive 

control (A+) 

(spray) 

GV3101 
(pKP 80) 

Spray 1.27 Spray 1.02   24 

Disarmed 

Agrobacterium 
and conjugative 

E. coli co-

infection (AE) 
(spray) 

GV3101 Spray 1.18 Spray 1.06   56 

DH5α 

(pKM 
101)(pKP 

80) 

Spray 0.61 Spray 0.55  

8th experiment  

9 February 2009, 

Silwet® l-77 0.05 
%, OD600=0.8*** 

(6th generation) 

 

Disarmed 

Agrobacterium 

as negative 
control (A-) 

GV3101 Dip 0.8 Dip 0.9 Dip 0.9 12 

Conjugative E. 
coli donor as a 

negative control 

(E) 

DH5α 
(pKM 

101)(pKP 

80) 

Dip 0.7 Dip 0.77 Dip 0.82 12 

Disarmed 

Agrobacterium 

and conjugative 
E. coli co-

infection after 

conjugation 
(AEC) 

DH5α 

(pKM 

101)(pKP 
80) + 

GV3101 

Dip  Dip    24 

* The temperature in the laboratory was 28° C, whereas at the other experiments it was between 20° to 25° C 

** Two cultures were combined together  

*** In this experiment we used both cultures grown to the OD600 of 0.8 
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Table 4: The concentrations of the control strain GV3101 (pKP 80) and experimental strains GV3101 and 

DH5α (pKM 101)(pKP 80), the OD600 and the mode of the first and second inoculation, the number of plants, 

and the concentrations used for experiments 6 and 7.  

Preglednica 4: Koncentracije seva GV3101 (pKP 80) kot pozitivne kontrole in sevov GV3101 ter DH5α 

(pKM 101)(pKP 80), optična gostote, način prve in druge inokulacije, število rastlin ter koncentracije 

uporabljene pri poskusih 6 in 7.  

 
* Every set of plants was inoculated with a combination of both cultures (GV3101 and DH5α (pKM 101)(pKP 80)), either directly 

mixed or preconjugated (AE or AEC experiments, respectively), at mentioned concentrations.  

3.3.1 Detailed description of inoculation procedures of experiments  

3.3.1.1 The first experiment - 7 October 2008 

The first generation of plants was inoculated according to the inoculation procedure 

developed by Koumpena et al. (2008). Their technique is based on the standard inoculation 

procedure developed by Clough and Bent (1998), known as the floral dip, and is adapted 

for inoculation with two cultures, A. tumefaciens and E. coli. The Clough and Bent (1998) 

standard inoculation was performed as the positive and negative control (positive control 

GV3101 (pKP 80) marked as A+, negative control GV3101 marked as A-, and negative 

control E. coli strain DH5α (pKM 101)(pKP 80) marked as E)  for the co-inoculation by A. 

tumefaciens and E. coli (AE).  

 

Liquid bacterial cultures, grown to the appropriate OD600 (Table 3), were poured into the 

centrifuge tubes and centrifuged for 15 min at 5,000 rpm. The supernatant was poured off 

and the remaining pellet was resuspended in the infiltration medium in which the plants 

were dipped for two minutes. First we dipped the negative control plants – two pots of 

eight plants – in the A. tumafeciens strain GV3101 (A-) and three pots of total 12 plants in 

the E. coli strain DH5α (pKM 101)(pKP 80) marked as E. For the co-infection we 

combined A- and E solutions and dipped 24 plants as previously described. At the end, the 

Experimen

t and 

generation 

of plants 

Bacterial 

cultures 

Strain Mode of 1st 

inoculation 

OD600 

of 

inocul

um 

Mode of 

2nd 

inoculati

on 

OD600 of 

inoculum 

No of 

plants 

T0 

Concent

ration 

6th 

experiment  

26 January 
2009 (5th 

generation) 

Infective 

Agrobacterium as 

positive control 
(A+) 

GV3101(pKP 80) Drops 1.65 Drops 1.65 8 1x 

8 10x 

8 100x 

Disarmed 

Agrobacterium 

and conjugative 
E. coli co-

infection (AE) 

GV3101 Drops 1.66 Drops 1.65 8* 1x 

DH5α (pKM 
101)(pKP 80) 

Drops 0.89 Drops 0.80 8* 10x 

8* 100x 

7th 

experiment  

26 January 
2009 (5th 

generation) 

Infective 

Agrobacterium as 

positive control 
(A+) 

GV3101(pKP 80) Drops 1.66 Drops 1.66 4 1x 

4 10x 

4 100x 

Disarmed 

Agrobacterium 

and conjugative 
E. coli co-

infection after 

conjugation 
(AEC) 

GV3101 Drops 1.56 Drops 1.7 8* 1x 

DH5α (pKM 

101)(pKP 80) 

Drops 0.9 Drops 0.81 8* 10x 

8* 100x 
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positive control plants were dipped in the GV3101 (pKP 80) marked as A+. After the dip 

the infiltration medium was applied with a pipette on the emerging buds in the rosettes of 

the plants. These buds were too small to be submerged in the infiltration medium by 

dipping, so they were also inoculated with drops from a pipette for a more effective 

inoculation. The comparison between the standard procedure and the conditions of this 

experiment is summarised in Table 5. 
 

Table 5: The comparison between the standard procedure (Clough and Bent, 1998) and the modifications of 

the co-inoculation of A. thaliana with A. tumefaciens and E. coli for the first generation of plants from 7 

October 2008. The optical density of A. tumefaciens GV3101 (pKP 80) inoculum is marked as OD600 A+, the 

optical density of A. tumefaciens GV3101 inoculum is marked as OD600 A, and optical density of E. coli 

DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 

Preglednica 5: Primerjava med standardnim načinom inokulacije (Clough in Bent, 1998) in modifikacijami 

pri sočasni inokulaciji z arabidopsisa z A. tumefaciens in E. coli pri prvi generaciji rastlin (7. oktober 2008). 

Optična gostota inokuluma A. tumefaciens GV3101 (pKP 80) je označena z OD600 A+, optična gostota 

inokuluma A. tumefaciens GV3101 z OD600 A, ter optična gostota inokuluma E. coli DH5α (pKM 101)(pKP 

80) kot OD600 E.  

 
The first 

experiment 

Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip Dip + drops 

No of inoculations 2 3 

Interval between 

inoculations 

5 or 6 days 3 days * 

4 days  

Conjugation No  

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures 

1x  

 

* The first re-inoculation was 3 days after the initial one, and the second re-inoculation was 4 days after the 

first one.  

 

The developmental stage of the flowers is crucial for a successful transformation and since 

the Arabidopsis flowers do not emerge all at once, Clough and Bent (1998) recommended 

repeating the dipping after 5 or 6 days. In our experiment we used a slightly modified 

original procedure: instead of one re-dip after five or six days, we performed two re-dips, 

the second one three days and the third one seven days after the first one (Table 5). The 

transformation ratios obtained by dip repetition three days after the first dip are reported to 

be very low (0.5 %) compared to the repeated procedure after five or six days (3.0 %) and 

no data exists for repetition after seven days (Clough and Bent, 1998). To expose the plants 

to A. tumefaciens too frequently could be detrimental to their health (Clough and Bent, 

1998), so we decided to reduce it by applying A. tumefaciens in the second inoculation 

only by drops with a pipette. By applying the bacterial cultures only to the blooms and 

emerging buds in the rosette, other plant parts were not exposed to pathogenic effects of 

the bacteria.  
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3.3.1.2 The second experiment – 17 December 2008 

In the second experiment plants were inoculated with preconjugated cultures of A. 

tumefaciens strain GV310 and E. coli strain DH5α (pKM 101) (pKP 80). Bacterial 

conjugation prior to the inoculation increases transformation ratios at least 30-fold 

(Koumpena et al., 2008). The cultures grown to the appropriate OD600 (Table 3) were 

centrifuged down (15 min, 5,000 rpm), supernatant was poured off and the pellet was 

resuspended in sterile 0.9 % NaCl (w/v), mixed together in a 40 ml of plain LB medium 

(without antibiotics) and centrifuged down again. The supernatant was then poured away 

and the pellet was resuspended in a small quantity of plain liquid LB medium so that it 

formed a thick suspension. This cell suspension was then placed onto the nitrocellulose 

filter on the plain LB agar plates and left in the incubator at 28° C for 4.5 hours. The pellet 

was then scratched off the filter and resuspended in the infiltration medium. The further 

protocol was as in the first experiment. The temperature in the laboratory during the first 

inoculation was unusually high (28° C) and that might have influenced the results. The 

second inoculation was taken after five days with the same protocol as the first one. The 

comparison between the standard procedure and the conditions of this experiment is 

summarised in Table 6. 

 
Table 6: The comparison between the standard procedure and the modifications in the second generation – 17 

December 2008. The optical density of A. tumefaciens GV3101 (pKP 80) inoculum is marked as OD600 A+, 

the optical density of A. tumefaciens GV3101 inoculum is marked as OD600 A, and optical density of E. coli 

DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 

Preglednica 6: Primerjava med standardnim postopkom in modifikacijami v drugi generaciji (17. december 

2008). Optična gostota inokuluma A. tumefaciens GV3101 (pKP 80) je označena z OD600 A+, optična gostota 

inokuluma A. tumefaciens GV3101 z OD600 A, ter optična gostota inokuluma E. coli DH5α (pKM 101)(pKP 

80) kot OD600 E. 

 

The second 

experiment 

Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip  

No of inoculations 2  

Interval between 

inoculations 

5 or 6 days 5 days 

Conjugation No Yes 

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures 

1x  

3.3.1.3 The third and fourth experiment – 6 January 2009 

The third and fourth experiments were performed on the plants of the third generation, 

planted on 6 January 2009. Because of the huge loses of T1 plants in the first experiment 

(AE) and no transformants in the second experiment (AEC), as well as the low 

transformation ratio in its positive control (A+), we decided to repeat both procedures with 

more plants.  
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The preparation of cultures, the conjugation process, and the dipping were performed just 

as in the first and the second experiment, but in both cases, the second inoculation was 5 

days after the first one. The comparison between the standard procedure and the conditions 

of these experiments is summarised in Table 7. 
 

Table 7: The comparison between the standard procedure and the modifications in the 6 January generation. 

One part of the plants was inoculated with the non-preconjugated culture, and the other part with a 

preconjugated culture. The optical density of A. tumefaciens GV3101 (pKP 80) inoculum is marked as OD600 

A+, the optical density of A. tumefaciens GV3101 inoculum is marked as OD600 A, and optical density of E. 

coli DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 

Preglednica 7: Primerjava med standardnim postopkom in modifikacijami pri rastlinah generacije 6. januar 

2009. En del rastlin je bil inokuliran z nekonjugiranima kulturama, drugi del pa s konjugiranima. Optična 

gostota inokuluma A. tumefaciens GV3101 (pKP 80) je označena z OD600 A+, optična gostota inokuluma A. 

tumefaciens GV3101 z OD600 A, ter optična gostota inokuluma E. coli DH5α (pKM 101)(pKP 80) kot OD600 

E. 
 

The third and 

fourth experiment 
Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip  

No of inoculations 2  

Interval between 

inoculations 

5 or 6 days 5 

Conjugation No Yes, No 

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures 

1x  

3.3.1.4 The fifth experiment – 12 January 2009  

Chung et al. (2000) and Ye (2008, unpublished) reported that spraying the inflorescences 

with an A. tumefaciens culture generates transgenic plants in relatively high frequencies, so 

we adapted their technique for co-inoculation with E. coli and A. tumefaciens. The 

bacterial cultures were grown to the appropriate OD, centrifuged down and resuspended in 

IM as in the previous experiments. The liquid was then poured into a 100 ml spray bottle 

and sprayed from a distance of 5–10 cm directly into the rosettes and on the buds. Spraying 

forms aerosols which could cause contamination of plants with a positive control GV3101 

(pKP 80) (A+), so we first sprayed the plants with AE, removed them from the laboratory, 

and placed them in the growing chamber, and then sprayed the control plants A+ (Table 8).  

 

Because we wanted to test if the sterilization of the soil affects plant performance, half of 

the control plants as well as the plants co-inoculated with E. coli and A. tumefaciens were 

planted in sterile soil and the other half in non-sterile soil. Except for a slightly different 

colour of the plants, we did not observe any difference in plant fitness or growth that could 

be attributed to soil sterility. 
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Table 8: The comparison between the standard procedure and the modifications in the spray experiment. The 

optical density of A. tumefaciens GV3101 (pKP 80) inoculum is marked as OD600 A+, the optical density of 

A. tumefaciens GV3101 inoculum is marked as OD600 A, and optical density of E. coli DH5α (pKM 

101)(pKP 80) inoculum as OD600 E. 

Preglednica 8: Primerjava med standardnim postopkom in modifikacijami pri inokulaciji s pršenjem. Optična 

gostota inokuluma A. tumefaciens GV3101 (pKP 80) je označena z OD600 A+, optična gostota inokuluma A. 

tumefaciens GV3101 z OD600 A, ter optična gostota inokuluma E. coli DH5α (pKM 101)(pKP 80) kot OD600 

E. 
 

The fifth 

experiment 
Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip Spray 

No of inoculations 2  

Interval between 

inoculations 

5 or 6 days 5 

Conjugation No  

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures 

1x  

3.3.1.5 The sixst and the seventh experiement - 26 January 2009 

The cell density and mode of inoculation are important factors which can affect the 

efficiency of the transformation. Drop-by-drop inoculation performed by Martinez-Trujillo 

et al. (2004) proved to be twice more efficient than inoculation by submersion. The 

percentage of transgenic plants they obtained by submerging the plants in the inoculum 

with an OD600 0.8 was 0.57 ± 0.18 % compared to 1.12 ± 0.26 % obtained by drop-by-drop 

inoculation with the same inoculum. The same team of researchers reported that an OD600 

higher than 2.0 produces transformation efficiency more than twice higher than an OD600 

of 0.8. The transformation efficiency obtained by drop-by-drop inoculation at an OD600 of 

0.8 was 1.03 ± 0.24 % and when the highly concentrated inoculum with an OD600 of more 

than 2.0 was used, the percentage of transgenic plants rose to 2.57 ± 0.32. Based on the 

results of Martinez-Trujillo et al. (2004) we decided to adapt their technique for co-

inoculation and co-inoculation with previous conjugation. Before the inoculation all open 

flowers on all the plants used in this experiment had been removed to increase 

transformation efficiency.  

 

Logemann et al. (2006) published the protocol for the floral dip where they used a bacterial 

culture grown to the lag phase on solid plates. They scratched bacteria from the plates and 

resuspended them in the medium to obtain the OD600 of about 2.0. Differently from 

Logemann et al. (2006), we used bacteria in the exponential phase at OD600 of about 1.6, 

when the most intensive growth occurs, and concentrated them 10- or 100-fold.  

 

The positive control strain A+ was grown to the OD600 1.564 (Table 4) and poured 65 ml 

into each of the three centrifuge tubes and centrifuged. The pellets were then resuspended 

in the infiltration medium (IM) as follows: for the 100-fold concentration in 0.65 ml of IM, 
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for the 10-fold concentration in 6.5 ml, and in 65 ml for the unconcentrated inoculum. 

Plants were inoculated with a pipette directly in the rosette and on the buds.  

 

The strains for the co-inoculation were harvested at the OD600 1.660 (A) and OD600 0.888 

(E) (Table 4). We poured GV3010 into three centrifuge tubes, 35 ml in each tube and the 

same was done with the DH5α (pKM 101)(pKP 80). The cultures were then centrifuged 

and the pellets were resuspended in a small amount of the infiltration medium. Then A and 

E pellets were mixed and IM was added to reach the final volume: for the 100-fold 

concentration in 0.70 ml of IM, for 10-fold in 7.0 ml IM, and in 70 ml of IM for the 

unconcentrated inoculum. The plants were inoculated with a pipette as previously 

described. The comparison between the standard procedure and the conditions of these 

experiments is summarised in Table 9. 
 

Table 9: The comparison between the standard procedure and the modifications in the experiment with 

different concentrations and no conjugation. The optical density of A. tumefaciens GV3101 (pKP 80) 

inoculum is marked as OD600 A+, the optical density of A. tumefaciens GV3101 inoculum is marked as OD600 

A, and optical density of E. coli DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 

Preglednica 9: Primerjava med standardnim postopkom in modifikacijami pri poskusu z različnimi 

koncentracijami in nekonjugiranima kulturama. Optična gostota inokuluma A. tumefaciens GV3101 (pKP 80) 

je označena z OD600 A+, optična gostota inokuluma A. tumefaciens GV3101 z OD600 A, ter optična gostota 

inokuluma E. coli DH5α (pKM 101)(pKP 80) kot OD600 E. 
 

The sixsth 

experiement 
Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip Drops  

No of inoculations 2  

Interval between 

inoculations 

5 or 6 days 6 

Conjugation No  

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures 

1x 1x, 10x, 100x 

 

The strains for the experiment with pre-conjugation were centrifuged down as described 

for the co-inoculation except the volumes were 50 ml. Both cultures were then resuspended 

in 5 ml of 0.9 % NaCl (w/v) and mixed together. We then added 1 ml of plain LB medium 

and centrifuged down again. Every pellet was thus composed of 50 ml of A and 50 ml of E 

culture. The pellets were resuspended in a small amount of plain LB medium and placed 

onto solid LB plates with a nitrocellulose membrane and left in the incubator at 28° C. 

After 4.5 hours the pellets were scratched and resuspended in 100 ml, 10 ml, or 0.1 ml of 

IM, depending on the desired final concentration. The inoculation with a pipette was 

performed as described previously. The control plants for the experiment with conjugation 

were inoculated as described for the A+ strain for the experiment without conjugation. The 

comparison between the standard procedure and the conditions of these experiments is 

summarised in Table 10. 
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Table 10: The comparison between the standard procedure and the modifications in the experiment with 

different concentrations and conjugation. The optical density of A. tumefaciens GV3101 (pKP 80) inoculum 

is marked as OD600 A+, the optical density of A. tumefaciens GV3101 inoculum is marked as OD600 A, and 

optical density of E. coli DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 
Preglednica 10: Primerjava med standardnim postopkom in modifikacijami pri poskusu z različnimi 

koncentracijami in konjugiranima kulturama. Optična gostota inokuluma A. tumefaciens GV3101 (pKP 80) je 

označena z OD600 A+, optična gostota inokuluma A. tumefaciens GV3101 z OD600 A, ter optična gostota 

inokuluma E. coli DH5α (pKM 101)(pKP 80) kot OD600 E. 

 

The seventh 

experiement 
Standard Modification 

OD600 A+ 0.8 to 1.2  

OD600 A 0.8 to 1.2  

OD600 E 0.5 to 0.8   

Mode  Dip Drops  

No of inoculations 2  

Interval between 

inoculations 

5 or 6 days 5 

Conjugation No Yes 

Concentration of 

surfractant 

0.02 %  

Concentration of 

cultures  

1x 1x, 10x, 100x  

 

In both cases, with or without conjugation, the highly concentrated (100x) bacterial culture 

had negative effects on the plants. The plants inoculated with a dense bacterial culture 

were smaller and their leaves and flowers were deformed. The whole 26 January 2009 

generation had an unusually low number of seeds (Figure 25, Table 20), regardless of the 

concentration of inoculum.  

3.3.1.6 The eight experiement - 9 February 2009 

In this experiment, we used both bacterial cultures grown to the same density at OD600 

around 0.8 and a higher Concentration of the surfractant Silwet
®
 L-77 (0.05 %). We used 

two negative controls (A- and E) and the preconjugated E. coli and Agrobacterium (AEC). 

The positive controls were not used due to technical reasons. The summary of 

experimental conditions for this experiment is presented in Table 11.  
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Table 11: The comparison between the standard inoculation method and inoculation with both cultures grown 

to the OD600=0.8. The optical density of A. tumefaciens GV3101 (pKP 80) inoculum is marked as OD600 A+, 

the optical density of A. tumefaciens GV3101 inoculum is marked as OD600 A, and optical density of E. coli 

DH5α (pKM 101)(pKP 80) inoculum as OD600 E. 

Preglednica 11: Primerjava med standardnim postopkom in modifikacijami pri poskusu, kjer sta bili obe 

kulturi uporabljeni pri optični gostoti OD600=0.8. Optična gostota inokuluma A. tumefaciens GV3101 (pKP 

80) je označena z OD600 A+, optična gostota inokuluma A. tumefaciens GV3101 z OD600 A, ter optična 

gostota inokuluma E. coli DH5α (pKM 101)(pKP 80) kot OD600 E. 

 

The eight 

experiement 
Standard Modification 

OD600 A+ 0.8 to 1.2 NT* 

OD600 A 0.8 to 1.2 0.8 

OD600 E 0.5 to 0.8  0.8 

Mode  Dip  

No of inoculations 2 3 

Interval between 

inoculations 

5 or 6 days 5 and 5  

Conjugation No Yes 

Concentration of 

surfractant 

0.02 % 0.05 % 

Concentration of 

cultures 

1x  

* Not tested  

 

The results in the Koumpena BSc thesis (2010) indicate that the most efficient donor-

recipient ratio is OD600 0.5 to 0.8 for E. coli and OD600 0.8 to 1.2 for A. tumefaciens. The 

OD600 0.5 to 0.8 means that the E. coli culture is in the exponential phase when intensive 

growth occurs. The number of E. coli cells in the culture at this phase is about 4 to 5x10
8
 

cfu per millilitre at OD600 0.5, and 6 to 7x10
8
 cfu per millilitre at OD600 0.8. The growth 

curve for A. tumefaciens is a little different with a more gently sloping curve and the most 

intensive cell proliferation at OD600 0.8 to 1.2, when cell density is around 1x10
9
 cfu per 

millilitre at OD600 0.8 to 1.9 to 2x10
9
 cfu per millilitre at OD600 1.2 (Koumpena BSc thesis, 

2010). 

 

The minimal donor-recipient ratio in the standard procedure is thus 1:5 at minimal OD600 

0.5 for E. coli cells and maximal OD600 1.2 for A. tumefaciens. In this experiment we 

lowered the number of A. tumefaciens cells to OD600 0.8, so the ratio was changed in 

favour of E. coli cells, and was about 1:1.4. This change was applied to check if a lowered 

donor-recipient ratio would give different results due to an increased chance for 

conjugation.  

 

The concentration of the surfractant Silwet
®
 L-77 is crucial for an efficient transformation, 

although it may cause damage to the plant tissue (Clough and Bent, 1998; Martinez-

Trujillo et al., 2004; Chung at al., 2000; Logemann et al., 2006; Bartholmes et al., 2008; 

Curtis and Nam, 2001; Davis et al., 2009; Zhang et al., 2006). The study by Clough and 

Bent (1998) shows that levels of Silwet
®
 L-77 between 0.02 % and 0.1 % give a 20-fold 

greater transformation rates compared to a 0.005 % Silwet
®
 L-77 content. Different authors 

recommend v/v concentrations from 0.01 % (Davis et al., 2009), 0.02 % (Chung at al., 

2000; Davis et al., 2009; Zhang et al., 2006), 0.03 % (Logemann et al., 2006), to 0.05 % 

(Clough and Bent, 1998; Martinez-Trujillo et al., 2004). Since none of the authors report 
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lethal effects on plants at a 0.05 % concentration of Silwet
®

 L-77, we decided to increase 

its content in IM in order to increase transformation efficiency.  

 

The inoculation procedure was the same as in the second experiment, but with two re-dips, 

5 and 10 days after the first one. Immediately after the first dip, the plants were more bent 

than in other experiments and needed a longer period to reach their normal posture again. 

Moreover, drying shoots and leaves were observed a few days after the second dip. We 

attributed these observations to the higher concentration of surfractant and repeated 

exposure of the plants to it’s toxic effects.  

3.4 SELECTION OF TRANSGENIC SEEDS 

Mature, dry siliques from inoculated plants were collected by individual clipping or by 

covering the plant with an inverted paper bag and tying it directly above the rosette (Figure 

14), at around 2 months after the inoculation. The bags were placed on the plants three to 

four weeks after inoculation, when the plants were 7 to 8 weeks old. At this age the plants 

start to dry and siliques start to open, so the placed bag prevents the loss of the seeds. 

When the whole plant was completely dry, it was cut directly above the rosette, and the 

siliques were collected from the bag. Siliques were squished to release seeds and sieved to 

remove chaff and other remains of plant tissue. The seeds were collected and either stored 

for future use or further processed (imbibed in water and sterilized – see below). 

 

In the first two experiments (7 October 2008 and 17 December 2008 plants) seeds were 

treated as follows: they were put in water at 4° C for 24 hours; the water was then removed 

and 70 % ethanol was added for 3 minutes. The ethanol was removed, and 25 % household 

bleach was added for 10 min. The bleach was then removed and the seeds were washed 

five times with sterile water. The seeds were then immersed in sterile water, vortexed so 

they were distributed evenly in the water and spread onto the plates by a pipette. We cut 

off the top of the pipette tip to enable the seeds to pass through it. The seeds were selected 

according to a short selective protocol (Harrison et al., 2006): they were spread on 

selective medium plates and left in the light for 4–6 hours at 21° C. They were then 

wrapped in aluminium foil for two days and stored in a dark place. The composition of the 

selective medium was as follows: MS medium 2.15 g/l (or MS salts 2.15 g/l + Gamborg 

B5 vitamin 1 ml (from stock solution 0,112 g/ml)), sucrose 10 g/l, MES 0.5 g/l, 0.8 g bacto 

agar, pH adjusted to 5.7 with 1N KOH. The selective medium was sterilized in an 

autoclave after the sterilization antibiotics were added: cefotaxime 200 µl/ml (from 200 

mg/ml stock solution) and kanamycin 50 µl/ml (from 50 mg/ml stock solution). After two 

days in the dark, the plates were unwrapped and left for two days at a normal 16 hours 

light / 8 hours dark regime.  

 

The seeds of the third experiment (6 January 2009 plants) were put in water at 4° C for 1.5 

days (the first part of the selection) or 1 day (the second part of the selection). The water 

was removed and 70 % ethanol was added. After 10 min the ethanol was removed and 25 

% household bleach with 0.05 % detergent Tween 80 was added for 10 min. The seeds 

were then rinsed five times with sterile water and spread on selective plates. The selection 

protocol was the same as before. Seeds of all the later generations were disinfected in the 

same manner as the first part of the third generation of seeds.  
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It should be noted here that the seeds were usually split in two batches in order to assay. 

One part of the seeds from the given experiment was left in the storage, and the other part 

was sterilised and prepared for the selection procedure as described above. In this regard, 

the selection procedure was always performed at two consecutive time points, the second 

of which followed a few days after the first. This split selection procedure was employed in 

order to reduce losses due to possible fungal infections (Zhang, 2006).  

 

The number of seeds was estimated before spreading on the selective plates by weighing 

on a precise balance, according to the equation: 1,250 seeds = 25 mg. Despite the careful 

sieving some chaff and plant tissue remained mixed in with the seeds and might 

contributed to the weight, so we counted the seeds spread on the plates manually. A piece 

of paper with a 1x1 cm grid was placed under the selective plate to simplify the counting. 

Arabidopsis seeds are ellipsoid, light to reddish brown, and 0.3–0.5 mm long and can be 

easily distinguished from other plant tissue which is pale green or yellowish-brown and 

pointed. The number of seeds determined by counting was significantly lower than the 

number determined by weighting, probably because of the presence of impurities which 

contributed to the overall weight. Manually acquired numbers of seeds were used in Tables 

and calculations.  

 

During the selection of plants of the last generation (9 February 2009 plants) a slimy, 

bacterial-like background growth was observed on the selective plates. To identify the 

bacteria samples were taken and streaked on bacteria-optimised media (LB and CM 

medium) with selective markers. The composition of CM medium was as follows: a-D-

glucose 20 g/l, (NH4)2SO4 1 g/l, KH2PO4 1 g/l, MgSO4(7H2O) 0.5 g/l, yeast extract 5 g/l, 

dH2O. The selective markers and description of the procedure are in the results section. 

  

 
 

Figure 14: The plants were wrapped in paper bags to collect seeds.  

Slika 14: Rastline smo ovili s papirnatimi vrečkami, v katere so padala semena.  

3.5 DETECTION OF THE TRANSGENIC PLANTLETS 

Transgenic plants, detected four days after the spread on the selective plates, were greener 

than non-transgenic plants and were transferred to new selective plates to check for 

phenotype persistency. We transferred all the plants which were greener than average. 

Plants were transferred one by one with pincers onto the selective plates with the same 

composition as for the first selection and left for several days at a normal 16 hours light / 8 

hours dark regime.  
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4 RESULTS  

The transformation of Arabidopsis thaliana is usually carried out by the flower dip method 

and is known to be influenced by several factors including the developmental stage of 

inoculated plants, the number of inoculations, the composition of inoculation medium 

(Clough and Bent, 1998), the mode of inoculation (Clough and Bent 1998, Chung et al., 

2000; Martinez-Trujillo et al., 2004), and – as with all plant transformations – the 

Agrobacterium strain and plasmid vector used (Hellens et al., 2000). In this work we 

pursued to employ past knowledge regarding optimal A. thaliana transformation while 

employing a novel protocol. We pursued to co-infect A. thaliana with a combination of an 

Agrobacterium disarmed strain and a conjugative Escherichia coli strain that would carry 

the binary vector. The disarmed strain used for this purpose was GV3101, the E. coli strain 

was DH5α, while the vector used was pKP80 (Pappas and Winans, 2003). The E. coli 

transgene-carrying strain and the Agrobacterium mediator were used directly in coinfection 

as a mixture of bacterial suspensions or after an interbacterial conjugation period which 

was carried out in order to allow E. coli to transfer the transgene vector to the A. 

tumefaciens mediator at optimal conditions. This would conceivably increase the number 

of A. tumefaciens transconjugants carrying the binary vector, and in turn increase maximal 

yields of plant transformants, since from previous experiments carried out with N. 

tabacum, it was proven that the route of transgene transfer at such biparental set-ups was 

from E. coli to Agrobacterium and then to the plant (Pappas and Winans, 2003). As a 

positive control, testifying to good plant receptivity, in all experiments GV3101 (pKP80) 

was used. Negative controls, testifying against unwarranted contamination in the 

transformation set-up, involved the use of GV3101 or DH5α (pKM101)(pKP80).  

4.1 RESULTS OF THE FIRST EXPERIMENT (7 OCTOBER 2008 PLANTS)  

The results for this experiment (the 7 October 2008 generation) are shown in Table 12. Out 

of 24 plants which were co-inoculated with GV3101 and DH5α (pKM 101)(KP 80) (AE), 

we got 30,467 seeds, 24,567 of which were destroyed by a fungal infection during the 

selection. From the remaining 5,900 seeds we got no transformants. The average seed 

number per plant was 1,269.  

 

The eight plants inoculated with GV3101 (pKP 80) (A+) as positive controls had almost 

3,000 seeds, 64 of which were transgenic (2.18 %). The discrepancies in the number of 

transformants between the selective plates were large: in the first part of the selection the 

percentage of the transgenic plants was 1.83 in the first plate and 4.80 in the second, 

whereas in the second part of the selection, where a single plate was used, it was 0.79 %. 

The average number of seeds per positive control (A+) plant was 367, and germination 

ratios were 100 % in all A+ plates. From the eight plants dipped in the negative control 

GV3101 (A-), and the twelve in DH5α (pKM 101)(KP 80) (E), we did not get any 

transgenic plants, as was expected. The percentage of vital (germinating) seeds on all the 

selective plates was very variable, ranging from 0 to 100 %. The plates with low or 

nonexistent percentage of germinating seeds were all infected with fungi, which overgrew 

the seeds and prevented germination or destroyed seedlings (selective plates 3 to 9 in the 

second part of the selection of co-inoculated plants).  
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Table 12: The transgenic seed assay for the first experiment. The assay was performed in two parts to reduce 

losses due to contamination. The seeds were sterilised and placed onto selective plates. After several days we 

counted the seedlings and transformants, and calculated the percentage of transformants per T1 plants. A. 

tumefaciens GV3101 (pKP 80) positive control is marked as A+, A. tumefaciens GV3101 negative control is 

marked as A-, E. coli DH5α (pKM 101)(pKP 80) as E, and coinoculation with  A. tumefaciens GV3101 and 

E. coli DH5α (pKM 101)(pKP 80) as AE. 
Preglednica 12: Selekcija transgenih rastlin pri prvem poskusu. Selekcijo smo izvedli v dveh delih, da bi se 

izognili morebitnim izgubam zaradi kontaminacije. Semena smo sterilizirali ter jih nanesli na selekcijske 

plošče. Po nekaj dneh smo prešteli sejančke in transgene rastline in izračunali odstotek transgenih rastlin. A. 

tumefaciens GV3101 (pKP 80) kot pozitivna kontrola je označena z A+, A. tumefaciens GV3101 kot 

negativna kontrola je z A-, E. coli DH5α (pKM 101)(pKP 80) je označena z E, koinokulacija z A. 

tumefaciens GV3101 in E. coli DH5α (pKM 101)(pKP 80) pa z AE. 

 
Expe

rime

nt 1 

Transgenic seed 

assay  

Plate 

no. 

No. of seeds on 

the selec-tive 

plate 

No of T1 

plants 

 % of 

vital 

seeds 

No of non-

germina-

ting seeds  

No of 

trans-

formants 

 % of 

transforman

ts per 

plate/total   

A+ 1
st
 part of the 

selection  

1 876 876 100 0 16 1.83 

2 792 792 100 0 38 4.80 

Total for the 1
st
 

part 

 1,668 1,668 100 0 54 3.24 

2
nd

 part of the 

selection  

1 1,270 1,270 100 0 10 0.79 

Total for the 2
nd

 

part 

 1,270 1,270 100 0 10 0.79 

Total for A+  2,938 2,938 100 0 64 2.18 

AE 1
st
 part of the 

selection 

1 865 813 93.99 52 0 0 

2 872 630 72.25 242 0 0 

Total for the 1
st
 

part 

 1,737 1,443 83.07 294 0 0 

2
nd

 part of the 

selection 

1 1,690 1,469 86.92 221 0 0 

2 2,508 2,248 89,63 260 0 0 

*3 2,928 134 4.58 2,794 0 0 

*4 6,383 0 0 6,383 0 0 

*5 3,484 0 0 3,484 0 0 

*6 4,890 0 0 4,890 0 0 

*7 1,258 0 0 1,258 0 0 

*8 3,942 493 12.51 3,449 0 0 

*9 1,647 113 6.86 1,534 0 0 

Total for the 2
nd 

part 

 28,730 4,457 15.51 24,273 0 0 

Total for AE  30,467 5,900 19.37 24,567 0 0 

A- 1
st 

part of the 

selection 

1 1,570 1,570 100 0 0 0 

2 562 562 100 0 0 0 

Total for the 1
st
 

part 

 2,132 2,132 100 0 0 0 

2
nd

 part of the 

selection 

1 1,890 1,890 100 0 0 0 

2 1,308 1,308 100 0 0 0 

Total for the 

2
nd

part 

 3,198 3,198 100 0 0 0 

Total for A-  5,330 5,330 100 0 0 0 

E 1
st
 part of the 

selection 

1 2,057 2,057 100 0 0 0 

2 1,493 1,493 100 0 0 0 

3 1,847 1,847 100 0 0 0 

Total for the 1
st
 

part 

 5,397 5,397 100 0 0 0 

2
nd

 part of the 

selection 

1 1,582 1,582 100 0 0 0 

2 2,086 2,086 100 0 0 0 

Total for the 2
nd

 

part 

 3,668 3,668 100 0 0 0 

Total for E  9,065 9,065 100 0 0 0 

* Fungal contaminations  
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4.2 RESULTS OF THE SECOND EXPERIMENT (17 DECEMBER 2008 PLANTS) 

From 5 plants dipped in the positive control strain (A+), we got 4,130 seeds and out of 

those 3,980 plants, 26 or 0.65 % were transgenic. The average number of seeds per plant 

was 826. Again, we found a large discrepancy in the percentage of transgenic plants 

between the first and the second part of the selection: in the first part of the selection we 

got 1.63 % of transgenic plants, whereas in the second part, we only got 0.54 %. There 

were large discrepancies even among the plates within the same part of the selection: in the 

first selection three plates were used and the percentages of transgenic plants were 2.67, 

0.95, and 1.43. The plate with the lowest percentage (0.95) was infected with fungi. The 

results from the second part of the selection were much more even, ranging from 0.50 to 

0.57 %.  

 

From the 8 plants dipped in the preconjugated GV310 and DH5α (pKM 101)(pKP 80), we 

got 13,990 seeds, none of which were transgenic, and the average number of seeds was 

1,110 per plant. Although seven out of nine selective plates were contaminated with fungi, 

the overall germination ratio was 99.37 % for the plants inoculated with the preconjugated 

inoculum, and 96.37 % for the control plants (Table 13).  

 
Table 13: The transgenic seed assay for the second experiment. The assay was performed in two parts for a 

control (A+) as well as for the preconjugated cultures (AEC). 

Preglednica 13: Selekcija transgenih rastlin pri drugem poskusu. Selekcija je potekala v dveh delih za 

kontrolne rastline (A+) kot tudi za rastline, inokulirane z predhodno konjugiranima kulturama (AEC).  

 

Experi

ment 2 

Transgenic 

seed assay  

Plate no. No. of 

seed on 

the 

selective 

plate 

No of 

T1 

plants 

 % of 

vital 

seeds 

No of non-

germinati

ng seeds  

No of 

transformants 

 % of 

transform

ants per 

plate/total 

A+ 1st part of 

the selection 

1 210 150 71.43 60 4 2.67 

2 260 210 80.77 50 2 0.95 

3 110 70 63,64 40 1 1.43 

Total for 

the 1st part 

 580 430 74.14 150 7 1.63 

2nd part of 

the selection 

1 1,300 1,300 100 0 7 0.54 

2 1,200 1,200 100 0 6 0.50 

3 1,050 1,050 100 0 6 0.57 

Total for 

the 2nd part 

 3,550 3,550 100 0 19 0.54 

Total  4,130 3,980 96.37 150 26 0.65 

AEC  1st part of 

the selection 

1 92 67 72.83 25 0 0 

2 74 60 81.08 14 0 0 

3 62 45 72.58 17 0 0 

Total for 

the 1st part 

 228 172 75.44 56 0 0 

2nd part of 

the selection 

1 1,500 1,500 100 0 0 0 

2 1,500 1,500 100 0 0 0 

3 1,500 1,500 100 0 0 0 

4 1,500 1,500 100 0 0 0 

5 1,100 1,100 100 0 0 0 

6 1,550 1,550 100 0 0 0 

Total for 

the 2nd part 

 8,650 8,650 100 0 0 0 

Total  8,878 8,822 99.37 56 0 0 
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4.3 RESULTS OF THE THIRD AND FOURTH EXPERIMENTS  (6 JANUARY 2009 

PLANTS) 

4.3.1 Results of the third experiment (preconjugated cultures)  

The results for the plants inoculated with the preconjugated culture are shown in Table 14. 

From the 32 plants dipped in the preconjugated GV310 and DH5α (pKM 101)(pKP 80), 

we got 11,476 seeds, 4,023 of which germinated, and 2 were transgenic (0.05 %), which is 

comparable to the results of Koumpena et al. (2008). For the first part of the selection six 

selective plates were used and a little more than 3000 seeds were planted, but none of those 

were transgenic. The remaining seeds were used in the second part of the selection on eight 

plates, where two seedlings were transgenic. The germination ratio in the second part of 

the selection was much lower than in the first, only 10.81 %, ranging from less than 6 % to 

20 %. The overall germination ratio was 35.06 % and the average number of seeds per 

plant was 359.  

 

From the 8 plants dipped in the positive control strain, we got 5,800 seeds. 2,379 of these 

germinated (41.33 %), and 41 (1.72 %) were found to be transformants. As in previous 

experiments the variability between the first and the second part of the selection was very 

high: in the first part of the selection it was 100 %, whereas in the second part it was only 7 

%. The average number of seeds was 725 per inoculated plant and the overall germination 

ratio was 41.02 %. 
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Table 14: The results from the third generation – 6 January 2009, dipped in preconjugated cultures of 

bacteria. The assay was performed in two parts for a control (A+) as well as for the preconjugated cultures 

(AEC). 

Preglednica 14: Rezultati za tretjo generacijo rastlin (6. januar 2009), ki smo jih inokulirali s predhodno 

konjugiranima kulturama bakterij. Selekcija je potekala v dveh delih za kontrolne rastline (A+) kot tudi za 

rastline, inokulirane z predhodno konjugiranima kulturama (AEC). 

4.3.2 Results of the fourth experiment (non-preconjugated cultures)  

The results for plants inoculated with the non-preconjugated culture are shown in Table 15. 

From the 32 plants dipped in the GV310 and DH5α (pKM 101)(pKP 80), out of 8,050 

seeds, we got no transgenic plants. The overall germination ratio was 36.77 % or 2,960 

Experimen

t 3 

Transgenic 

seed assay  

Pla

te 

no. 

No. of seed on 

the selective 

plate 

No of 

T1 

plants 

 % of 

vital 

seeds 

No of non-

germinatin

g seeds  

No of 

transformants 

 % of 

transform

ants per 

plate/total 

 A+ 

  

  

  

  

  

  

  

1st part of the 

selection 

1 370 370 100 0 3 0.81 

2 540 540 100 0 9 1.67 

3 540 540 100 0 12 2.22 

4 680 680 100 0 15 2.21 

Total for the 

1st part 

 2,130 2,130 100 0 39 1.83 

2nd part of 

the selection 

1 1,300 91 7.00 1,209 1 1.10 

2 1,000 70 7.00 930 1 1.43 

3 770 81 10.52 689 0 0 

4 600 25 4.17 765 0 0 

Total for the 

2nd part 

 3,670 267 7.28 3,593 2 0.75 

Total  5,800 2,397 41.33 3,593 41 1.71 

AEC 

  

  

  

  

  

  

  

  

  

  

  

1st part of the 

selection 

1 540 540 100 0 0 0 

2 460 460 100 0 0 0 

3 540 540 100 0 0 0 

4 480 480 100 0 0 0 

5 640 640 100 0 0 0 

6 460 460 100 0 0 0 

Total for the 

1st part 

 3,120 3,120 100 0 0 0 

2nd part of 

the selection 

1 1,000 120 12.00 880 0 0 

2 1,200 70 5.83 1,130 1 1.43 

3 1,300 200 15.38 1,100 0 0 

4 900 115 12.78 785 1 0.87 

5 1,136 101 8.89 1,035 0 0 

6 1,300 132 10.15 1,168 0 0 

7 1,100 80 7.27 1,020 0 0 

8 420 85 20.24 335 0 0 

Total for the 

2nd part 

 8,356 903 10.81 7,453 2 0.22 

Total  11,476 4,023 35.06 7,453 2 0.05 
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germinating seeds, but again there was a very low percentage (3.05 %) of germinating 

seeds in the second part of the selection. The average number of seeds per plant was 252.  

From the 8 plants dipped in the control strain (A+), we got 3,565 seeds, 1,936 or 54.31 % 

of which germinated, and the average number of seeds per plant was 446. There were 11 

transgenic plants (0.57 %). The germination ratio on the selective plate in the first part of 

the selection was 100 % and 6 (0.34 %) transgenic plants were identified, whereas in the 

second part the germination ratio was below 10 % and 5 transgenics (2.92 %) were grown.  
 

Table 15: The results from the third generation – 6 January 2009, dipped in non-preconjugated cultures of 

bacteria. The assay was performed in two parts for a control (A+) as well as for the non-preconjugated 

cultures (AE). 

Preglednica 15: Rezultati za tretjo generacijo rastlin (6. januar 2009), ki smo jih inokulirali z 

nekonjugiranima kulturama bakterij. Selekcija je potekala v dveh delih za kontrolne rastline (A+) kot tudi za 

rastline, inokulirane z dvema kulturama (AE). 

 

Experi

ment 4 

Transgenic 

seed assay  

Plate 

no. 

No. of seed on 

the selective 

plate 

No of T1 

plants 

 % of vital 

seeds 

No of non-

germinatin

g seeds  

No of 

transform

ants 

 % of 

transformants 

per plate/total 

 A+  1st part of the 

selection 

1 1,765 1,765 100 0 6 0.34 

Total for 1st 

part 

 1,765 1,765 100 0 6 0.34 

2nd part of 

the selection 

1 1,100 78 7.09 1,022 2 2.56 

2 700 93 13.29 607 3 3.23 

Total for 2nd 

part 

 1800 171 9.5 1,629 5 2.92 

Total  3,565 1,936 54.31 1,629 11 0.57 

AE  1st part of the 

selection 

1 550 550 100 0 0 0 

2 610 610 100 0 0 0 

3 540 540 100 0 0 0 

4 480 480 100 0 0 0 

5 620 620 100 0 0 0 

Total for 1st 

part 

 2,800 2,800 100 0 0 0 

2nd part of 

the selection 

1 1,000 78 7.8 922 0 0 

2 900 26 2.89 874 0 0 

3 400 10 2.5 390 0 0 

4 1,000 0 0 1,000 0 0 

5 800 31 3.88 769 0 0 

6 450 15 3.33 435 0 0 

7 700 0 0 700 0 0 

Total for 2nd 

part 

 5,250 160 3.05 5,090 0 0 

Total  8,050 2,960 36.77 5,090 0 0 
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4.4 THE PERCENTAGE OF TRANSGENIC PLANTS AND VITAL SEEDS  

4.4.1 The percentage of transgenic plants in positive control plants (A+)  

As explained in Materials and methods section, the selection procedure in the first four 

experiments was performed at two consecutive time points, the second of which followed a 

few days after the first. Generally, the percentage of transgenic plants in positive controls 

(A+) tends to be higher in the first part of the selection and lower in the second part (Figure 

15). An average percentage of transgenic plants in the first part of the selection of A+ 

inoculated plants was 1.89, whereas in the second part was 1.07. The differences between 

the selective plates were very high regardless of the part of the selection (Annex A), 

ranging from 0.00 % to 4.8 % of transgenics per plate. The variability was higher in the 

first part of the selection: the standard deviation in this part was 1.25, and in the second 

1.07. Transgenic plants were also obtained in plants co-inoculated with preconjugated   

Agrobacterium and E. coli in Experiment 3 (Table 10, selective plates 2 and 4 in the 

second part of the selection). Because this was the only case within the first four 

experiments, the comparison of differences between percentages of transgenic plants could 

not be made.  

 

 
 
Figure 15: Total percentage of transgenic T1 plants inoculated with GV310 (pKP80) as a positive control in 

the first four experiments depending on the part of the selection. Generally, the percentage of transgenic 

plants tends to be higher in the first part of the selection and lower in the second part.  

Slika 15: Skupni odstotek transgenih T1 rastllin, inokuliranih s pozitivno kontrolo GV310 (pKP80) v prvih 

štirih poskusih. Odstotek transgenih rastlin je bil v povprečju višji v prvem delu selekcije in nižji v drugem 

delu.  
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4.4.2 The percentage of vital seeds  

The differences between the parts of the selection were also in the viability of seeds. The 

germination ratio for positive control plants in the first part of the selection was higher than 

in the second (Tables 7, 9, 11, and 12). The average germination ratio for A+ in the first 

part of the selection was more than 91.58 % and in the second part less than 44.91 % 

(Annex B). The variability of the results was much greater in the second part, the standard 

deviation was 47.48 and 14.14 in the first part.  

 

The selection of plants co-inoculated with Agrobacterium and E. coli (AE) or with 

preconjugated Agrobacterium and E. coli (AEC) showed similar results. The percentage of 

vital seeds was on average higher in the first part of the selection and usually dropped 

significantly in the second part (Figure 16).  

 

 
 

Figure 16: The total percentage of vital seeds in the first four experiments in regard to the part of the 

selection for plants co-inoculated with  Agrobacterium and E. coli (AE) or co-inoculated with preconjugated 

Agrobacterium and E. coli (AEC).  

Slika 16: Skupni odstotek kaljivih semen sočasno inokuliranih rastlin (AE), ter rastlin, inokuliranih s 

konjugiranima kulturama (AEC) v odvisnosti od dela selekcije za prve štiri poskuse.   

4.5 RESULTS OF THE FIFTH EXPERIMENT (12 JANUARY 2009 PLANTS) 

In this experiment 32 plants were used as a positive control and 56 plants for co-

inoculation. The 32 plants used as a control yielded 3,718 seeds (116 per plant), the 

percentage of germinating seeds was 87 %, and 487 seeds did not germinate. Among the 

3,231 germinating seeds, there were 111 transgenic plants or 3.44 % (Figure 17 and Table 

16). Additionally, some mosaic plants were observed. 
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The co-inoculated plants yielded 10,202 seeds (182 per plant) and the percentage of 

germinating seeds was 87 % or 8,871 T1 plants. Five plants from selective plates number 3, 

5, and 6 were clearly transgenic, i.e. 0.06 % (Figure 18). We also observed one green plant 

on the plate 1, but the transgenicy of this plant is under the question, because it grew on the 

edge of the plate and might had not have been affected by the antibiotic selective marker. 

Upon the re-transfer onto a new selective plate this plant was contaminated and decayed 

before it could be undoubtedly recognised as truly transgenic.  

 

The germination ratio was calculated as a ratio derived from plate 2 (positive control), 

where 400 plants were grown from every 460 seeds, which gives a germination ratio of 

0.869, rounded to 0.87. The selection in this and in the following experiments was 

performed in one single part. 

 
Table 16: The results from the spray experiment. 

Preglednica 16: Rezultati poskusa inokulacije s pršenjem.  

Experim

ent 5 

Transge

nic seed 

assay  

Plate 

No 

No of seed 

on the 

selective 

plate 

No of T1 

plants 

No of non-

germinatin

g seeds  

 % of 

vital 

seeds 

No of 

transfor

mants 

 % of 

transforman

ts per 

plate/total 

A+ 1
st
 part 

of the 

selectio

n 

1 880 765 115 87 24 3.14 

2 460 400 60 87 12 3.00 

3 1,128 980 148 87 31 3.16 

4 1,250 1,086 164 87 44 4.05 

Total 3,718 3,231 487 87 111 3.44 

AE 1
st
 part 

of the 

selectio

n 

1 2,463 2,143 320 87 0 0.00 

2 1,847 1,607 240 87 0 0.00 

3 1,284 1,117 167 87 1 0.09 

4 1,808 1,573 235 87 0 0.00 

5 1,000 870 130 87 3 0.34 

6 1,800 1,566 234 87 1 0.06 

Total 10,202 8,871 1,331 87 5 0.06 
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Figure 17: The selection of transgenic plants (green) which are clearly different from the non-transgenic 

plants (pale). These are the plantlets from the seeds of the fifth experiment (12 January 2009 generation of 

plants) sprayed with a positive control strain GV3101 (pKP80).  

Slika 17: Selekcije transgenih rastlin (zelene barve), ki se očitno razlikujejo od netransgenih (svetle). Slika 

prikazuje rezultate petega poskusa - rastlinice generacije 12. januarj 2009, ki so bile inokulirane s pršenjem s 

pozitivno kontrolo GV3101 (pKP80). 

 

 
 
Figure 18: Three of five transgenic plants obtained by spray co-inoculation with A. tumefaciens and E. coli. 

Green transgenic plants are clearly distinguished from the pale non-transgenics.  

Slika 18: Tri od petih transgenih rastlin, pridobljenih s sočasno inokulacijo s pršenjem z A. tumefaciens in E. 

coli. Zelene transgene rastline so dobro vidne med svetlimi netransgenimi rastlinami.  

4.6 RESULTS OF THE SIXST AND SEVENTH EXPERIMENTS (26 JANUARY 2009 

PLANTS) 

4.6.1 Results of the sixsth experiment (experiment without conjugation) 

The results of the experiment without prior conjugation are presented in Table 17. In this 

experiment we used 8 plants for every concentration and control. From the 8 plants 

inoculated with a 1x concentration we got only 204 seeds (25 per plant), 50.10 % or 104 of 

which germinated and none of which were transgenic. The corresponding control plants 

yielded 580 seeds (73 per plant), of which only 84 or 14.48 % germinated. None of the 

control plants inoculated with the 1x concentration yielded any clearly transgenic seeds – 

we observed only 4 poorly growing four-leaved mosaics.  
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The plants inoculated with a 10x concentration yielded 152 seeds, 68.42 % or 104 seeds 

germinated and out of those 10.58 % or 11 plants were transgenic, which is the highest 

percentage of transgenic plants of all the experiments performed. The percentage in control 

plants was 7.69 % or 2 plants out of 26. The percentage of germinating seeds in the control 

was very low, only 5.53 % or 26 plants out of 470 seeds.  

 

The plants inoculated with a 100x concentrated culture yielded 390 seeds (49 per plant), 

out of 177 germinating seeds (germination ratio 57.09 %) 1 or 0.56 % was transgenic. 

Beside this transgenic plant we observed five mosaics. The control plants yielded 309 

seeds (39 per plant); 69 seeds germinated (22.33 %) and none of them were transgenic.  
 

Table 17: The results of the experiment 6. Plants, planted on 26.1.2009 were dipped in non-preconjugated 

cultures of bacteria (AE), which were concentrated 10 or 100-times or were used unconcentrated (1 x). 

Preglednica 17: Rezultati poskusa št.6 z rastlinami generacije 26. januar 2009, inokuliranimi z 

nekonjugiranima kulturama (AE). Bakterijske kulture so bile koncentrirane 10 ali 100 krat, uporabili pa smo 

tudi nekoncentrirane kulture (1x).  

 
Experiment 6 

(26.1.2009 AE) 

Plate 

no.  

No of seeds 

per selective 

plate  

No of T1 

plants  

 % of 

vital 

seeds 

Non-

germinati

ng seeds 

No. of 

transgenic 

plants 

 % of 

transforma

nts per 

plate/total 

A+ 1x  1 340 38 11.18 302 0 0 

2 240 46 19.17 194 0 0 

Total 580 84 14.48 496 0 0 

A+ 10x  1 220 16 7.27 204 1 6.25 

2 250 10 4.00 240 1 10.00 

Total 470 26 5.53 444 2 7.69 

A+ 100x  1 224 50 22.32 174 0 0 

2 85 19 22.35 66 0 0 

Total 309 69 22.33 240 0 0 

AE 1x 1 104 52 50 52 0 0 

2 100 52 52 48 0 0 

Total 204 104 50.10 100 0 0 

AE 10x 1 100 52 52 48 * N/D * N/D 

2 100 52 52 48 * N/D * N/D 

Total 200 104 52 96 11 10.5 

AE 100x 1 180 25 13.89 155 * N/D * N/D 

2 210 152 72.38 58 * N/D * N/D 

Total 390 177 57.09 213 1 0.56 

* N/D – no data 

4.6.2 Results of the seventh experiment (experiment with conjugation) 

The results are presented in Table 18. None of the control plants used in this experiment 

yielded any vital seeds. The number of seeds per parental plant was 55 (220 seeds from 4 

plants) for the uncondensed culture, 107 (430 from 4 plants) for the 10x concentration, and 

no seeds from the four plants for 100x concentration.  
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The plants inoculated with the preconjugated Agrobacterium and E. coli yielded 280 seeds 

(35 per plant) for the 1x concentration, 301 seeds or 38 per plant for the 10x concentration 

and 170 seeds or 21 per plant for the 100x concentration. The germination ratio was 100 % 

in all cases. 

 

Plants inoculated with 1x concentrated preconjugated culture yielded no transgenic seeds, 

although we observed 6 mosaic plants. A more condensed culture at a 10x concentration 

yielded one transformant (0.33 %) and 21 mosaics. From the plants inoculated with a 100x 

concentrated culture we got 1 transformant or 0.59 %.  
 

Table 18: The results of the experiment 6. Plants, planted on 26.1.2009 were dipped in preconjugated cultures 

of bacteria (AE), which were concentrated 10 or 100-times or were used unconcentrated (1 x). 

Preglednica 18: Rezultati poskusa št.6 z rastlinami generacije 26. januar 2009, inokuliranimi s konjugiranima 

kulturama (AE). Bakterijske kulture so bile koncentrirane 10 ali 100 krat, uporabili pa smo tudi 

nekoncentrirane kulture (1x).  

 
Experiment 7 

(26.1.2009 

AEC) 

Plate no. No of seeds 

per selective 

plate  

No of T1 

plants 

 % of 

vital 

seeds 

Non-

germinating 

seeds 

No. of 

transgenic 

plants 

 % of 

transgenic 

plants 

A+ 1x 1 100 0 0 100 0 0 

2 120 0 0 120 0 0 

Total 220 0 0 220 0 0 

A+ 10x 1 210 0 0 210 0 0 

2 220 0 0 220 0 0 

Total 430 0 0 430 0 0 

A+ 100x 1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Total 0 0 0 0 0 0 

 AEC 1x 1 140 140 100 0 0 0 

2 140 140 100 0 0 0 

Total 280 280 100 0 0 0 

 AEC 10x 1 121 121 100 0 N/D* N/D 

2 180 180 100 0 N/D N/D 

Total 301 301 100 0 1 0.33 

 AEC 100x 1 98 98 100 0 N/D N/D 

2 72 72 100 0 N/D N/D 

Total 170 170 100 0 1 0.59 

* N/D – no data 

4.7 RESULTS OF THE EIGHT EXPERIMENT (9 FEBRUARY 2009 PLANTS) 

The plants inoculated with the negative control DH5α (pKP80)(pKM101) (E) yielded 680 

seeds, all of which germinated. Surprisingly, there were 7 mosaic plants (1.03 %), which 

grew to the phase of four true leaves (Figures 20 and 21). Compared to the true 

transformants, these plants were growing slowly and they died later, after they were 

transferred into soil. The plants from another negative control, GV3101 (A-), yielded 3,240 

seeds (the percentage of germinating seeds was 90 %) and 2,916 plants. As in the E. coli 
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negative control, we observed 11 mosaic plants among them, but no clearly transgenic 

plant.  

 

From the plants inoculated with the preconjugated E. coli and Agrobacterium we got 636 

seeds, the percentage of germinating seeds was 100 %, and we got one transgenic plant 

(0.16 %) (Table 19 and Figure 19), and one slow-growing mosaic plant. Neither this 

mosaic plant, nor the mosaics from the negative control mentioned before, grew in soil.  
 

During the selection, we observed a slimy bacterial-like background growth on the 

selective plates of the negative control DH5α (pKP80)(pKM101) plants, as well as on the 

plates of the plants inoculated with the preconjugated GV3101 and DH5α 

(pKP80)(pKM101). A sample was taken and streaked on the selective plates on different 

media with a selective marker. On the CM medium at 30° C, the result was positive, on the 

LB medium with Rif and Gent at 30° C, it was negative, and on the LB medium with Ap 

and Spec at 30° C, three colonies grew. These colonies were transferred onto a fresh 

selective plate with the same composition and were incubated at 37° C, which is the most 

appropriate temperature for E. coli. The result in this case was negative, so we can exclude 

the contamination with E. coli.  
 

Table 19: The results from the experiment 8 (9 February 2009 generation of plants).  

Preglednica 19: Rezultati poskusa št.8 z rastlinami generacije 9.  februar 2009. 
 
Experiment 8 

(OD=0.8) 

Plate 

no. 

No of 

seeds per 

selective 

plate  

No of 

T1 

plants 

 % of 

vital 

seeds 

Non-

germinating 

seeds 

No. of 

transgenic 

plants 

 % of transgenic 

plants 

A- 

  

1 1,800 1620 90 180 0 0 

2 1,440 1296 90 144 0 0 

Total 3,240 2,916 90 324 0 0 

E 1 280 280 100 0 0 0 

2 400 400 100 0 0 0 

Total 680 680 100 0 0 0 

AEC  1 86 86 100 0 0 0 

2 180 180 100 0 1 0.56 

3 210 210 100 0 0 0 

4 160 160 100 0 0 0 

Total 636 636 100 0 1 0.16 
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Figure 19: A transgenic plant from an experiment with OD600=0.8. 

Slika 19: Transgena rastlina iz poskusa, v katerem sta bili obe kulturi uporabljeni pri OD600=0.8.  

  

 
 

Figure 20: Mosaic plants from experiment eight which were transferred onto fresh selective plates.  

Slika 20: Mozaične rastline iz osmega poskusa, ki smo jih prenesli na sveže selekcijsko gojišče.  

 

 
 

Figure 21: Mosaic plants from experiment eight.  

Slika 21: Mozaične rastline iz osmega poskusa.  
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4.8 SUMMARY OF THE RESULTS 

The results of all the experiments conducted in this work (October 2008 – July 2009) are 

summarized in Table 20. The standard variations in the percentage of transgenic plants, the 

number of seeds per plant, and the percentage of germinating seeds were high in different 

experiments and also among the controls (Figures 22, 23, 24, 25, and 26). The lowest 

percentage of transformants was 0 % in all cases, the highest among the positive control 

plants (A+) inoculated with GV3101 (pKP 80) was 7.69 %, in the case of plants inoculated 

with a 10x bacterial concentration. The highest percentage of transgenic seeds in plants 

inoculated with the preconjugated culture was a 0.59 % (100-fold concentrated culture) 

and in non-preconjugated it was even higher, 10.58 % (10-fold concentrated culture).  

 

Similarly, the seed number per plant and the number of vital seeds per plant was also 

highly variable, from no vital seeds per plant (positive control, 100x concentration), up to 

more than 1,200 seeds per plant. The percentage of germinating seeds was from 0 % to 100 

% (Table 20). 
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Figure 22: The average percentage of transgenic plants in the experiments and positive controls. The numbers 

indicate the generations of plants and the corresponding positive controls: 7 October 2008 (1), 17 December 

2008 (2), 6 January 2009 AE (3), 6 January 2009 AEC (4), 12 January 2009 (5), 26 January 2009 AE 1x (6), 

26 January 2009 AE 10 x (7), 26 January 2009 AE 100x (8), 26 January 2009 AEC 1x (9), 26 January 2009 

AEC 10x (10), 26 January 2009 AEC 100x (11), and 9 February 2009 (12). In the last generation we used 

only two negative controls, as positive controls for selection plants from prevoius generations were used. 

Slika 22: Povprečen odstotek transgenih rastlin v poskusih in pozitivnih kontrolah. Številke pomenijo 

generacijo inokuliranih rastlin in pripadajočih pozitivnih kontrol: 7. oktober 2008 (1), 17. december 2008 (2), 

6. januar 2009 AE (3), 6. januar 2009 AEC (4), 12. januar 2009 (5), 26. januar 2009 AE 1x (6), 26. januar 

2009 AE 10 x (7), 26. januar 2009 AE 100x (8), 26. januar 2009 AEC 1x (9), 26. januar 2009 AEC 10x (10), 

26. januar 2009 AEC 100x (11) in 9. februar 2009 (12). V zadnji generaciji sta bili uporabljeni samo dve 

negativni kontroli.  
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Figure 23: The maximum, minimum, and average percent of transgenic plants on selective plates in positive 

controls (A+).  

Slika 23: Najvišji, najnižji in povprečen odstotek transgenih rastlin na selekcijskih ploščah pri pozitivnih 

kontrolah (A+).   
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Figure 24: The maximum, minimum, and average percent of transgenic plants on selective plates in the 

experiments (AE and AEC).  

Slika 24: Najvišji, najnižji in povprečen odstotek transgenih rastlin na selekcijskih ploščah pri poskusih (AE 

in AEC).  
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Figure 25: The number of seeds per plant in different generations. The columns represent generations as 

follows: 7 October 2008 AE (1), A+ (2), E (3), A- (4); 17 December 2008 AEC (5) A+ (6); 6 January 2009 

AE (7), A+ (8), AEC (9), A+ (10); 12 January 2009 AE (11), A+ (12); 26 January 2009 AE 1x (13), A+ 1x 

(14), AE 10 x (15), A+ 10x (16), AE 100x (17), A+ 100 x (18), AEC 1x (19), A+ (20), AEC 10x (21), A+ 

10x (22), AEC 100x (23), A+ 100x (24); 9 February 2009 AEC (25), E (26), and A- (27). The number of 

seeds in the first three generations (7 October 2008, 17 December 2008, and 6 January 2009) was within 

expectations, but later it dropped for unknown reasons.  

Slika 25: Število semen na rastlino v različnih generacijah. Stolpci predstavljajo število semen v generacijah 

po zaporedju: 7. oktober 2008 AE (1), A+ (2), E (3), A- (4); 17. december 2008 AEC (5) A+ (6); 6. januar 

2009 AE (7), A+ (8), AEC (9), A+ (10); 12. januar 2009 AE (11), A+ (12); 26. januar 2009 AE 1x (13), A+ 

1x (14), AE 10 x (15), A+ 10x (16), AE 100x (17), A+ 100 x (18), AEC 1x (19), A+ (20), AEC 10x (21), A+ 

10x (22), AEC 100x (23), A+ 100x (24); 9. februar 2009 AEC (25), E (26) in A- (27). Število semen v prvih 

treh generacijah 7. oktober 2008, 17. december 2008 in 6. januar 2009) je bilo v okviru pričakovanj, kasneje 

pa je število zaradi neznanega vzroka padlo.  
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Figure 26: The percentage of germinating seeds. The percentage of germinating seeds ranges from 0 to 100 

%. The columns represent generations as follows: 7 October 2008 AE (1), A+ (2), E (3), A- (4); 17 

December 2008 AEC (5) A+ (6); 6 January 2009 AE (7), A+ (8), AEC (9), A+ (10); 12 January 2009 AE 

(11), A+ (12); 26 January 2009 AE 1x (13), A+ 1x (14), AE 10 x (15), A+ 10x (16), AE 100x (17), A+ 100 x 

(18), AEC 1x (19), A+ (20), AEC 10x (21), A+ 10x (22), AEC 100x (23), A+ 100x (24); 9 February 2009 

AEC (25), E (26), and A- (27).  

Slika 26: Odstotek kaljivih semen. Odstotek kaljivih semen varirira od 0 do 100 %. Stolpci predstavljajo 

število semen v generacijah po zaporedju: 7. oktober 2008 AE (1), A+ (2), E (3), A- (4); 17. december 2008 

AEC (5) A+ (6); 6. januar 2009 AE (7), A+ (8), AEC (9), A+ (10); 12. januar 2009 AE (11), A+ (12); 26. 

januar 2009 AE 1x (13), A+ 1x (14), AE 10 x (15), A+ 10x (16), AE 100x (17), A+ 100 x (18), AEC 1x (19), 

A+ (20), AEC 10x (21), A+ 10x (22), AEC 100x (23), A+ 100x (24); 9. februar 2009 AEC (25), E (26) in A- 

(27). 
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5 DISCUSSION AND CONCLUSIONS  

In this work, we attempted to obtain transgenic A. thaliana plants by co-inoculation with E. 

coli as a transgene donor and disarmed A. tumefaciens as intermediate strain, using 

alternations of the floral dip method. The floral dip is a simple, routinely used technique 

for obtaining transgenic plants, developed by Clough and Bent (1998), which gives an 

average of 1 % transformation efficiency (Clough and Bent, 1998; Zhang et al., 2006). 

Different techniques to increase the ratio of transformation have been attempted, but with 

no significant improvement (Logemann et al., 2006; Martinez-Trujillo et al., 2004; Zhang 

et al., 2006; Davis et al., 2009; Chung et al., 2000). Despite the low frequency of 

transformation, the average seed number per plant is usually high enough to get several 

transgenic seeds per inoculated plant.  

 

Plant transformation by E. coli – Agrobacterium co-inoculation was first reported by 

Pappas and Winans (2003). In their work N. tabacum leaf explants were used as the 

transformation substrate; their simultaneous coinfection by the bacterial parents proved to 

be 30–40-fold less than the direct transformation from an Agrobacterium transgene 

carrying strain. When the bacterial parents where pre-mated prior to plant infection, the 

ratio rose to approximately threefold. The same principle was later adapted for Arabidopsis 

whole-plant flower-dip inoculation by Koumpena et al. (2008), aiming (i) to illustrate the 

success of this experimental set-up in an in planta application and (ii) to achieve  better 

transformant yields, given that Arabidopsis generates substantial amounts of seeds (on 

average several hundred per plant) that permit detection of low transformant frequencies. 

Indeed, Koumpena and collaborators managed to reach a transformation ratio of about 

0.002 %-0.004 % for direct co-infections which would rise 60-fold upon bacterial 

premating. Average transformability in those experiments with an infecting Agrobacterium 

was 2.56 %. Koumpena and collaborators also experimented with evaluating two different 

Agrobacterium transforming strains, with finding optimal donor-recipient ratios in E. coli – 

Agrobacterium filter matings that would precede the transformation step, and by assessing 

medium composition, temperatures at inter-bacterial conjugation and durations of matings 

(Koumpena et al., 2008; Koumpena et al., 2010). 

 

Our intention in the present work was to further improve transformation efficiencies by 

employing all optimal conditions deriving from the previous work – i.e., use the best 

yielding Agrobacterium strain and mate it with E. coli donors at the most suitable 

temperature – and also to experiment with bacterial culture concentrations, and different 

modes of inoculation. The improvement of the transformation ratios would lead to better 

applicability of the method and its further development towards routine use for plant 

transformation.  

5.1 THE PERCENTAGE OF TRANSGENIC SEEDS 

The previous study by Koumpena et al. (2008) has shown that a 4–5-hour conjugation of 

Agrobacterium and E. coli strains at 28° C on a solid LB medium with a nitrocellulose 

filter can increase transformation efficiency up to several ten-folds. Plants co-inoculated 

with DH5α (pKP80)(pKM101) and Agrobacterium EHA101 yielded 0.001 % of transgenic 
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seeds, whereas plants inoculated with preconjugated cultures yielded 0.059 %. The results 

from our experiments suggest that the concentration of the bacterial culture is an equally 

important factor. We observed the increased transformation ratios at a 10x concentration in 

preconjugated and non-preconjugated cultures inoculated with drops (Figure 22). The 

beneficial effects of the concentrated cultures and drop-by-drop inoculation have been 

observed before by Martinez-Trujillo et al. (2004). They observed a transformation 

efficiency that was two times higher among plants inoculated with a 6x condensed culture, 

which had previously grown to the stationary stage of about OD600=2.0. They also reported 

that the transformation ratio increased up to two times in plants inoculated by drops instead 

of submersion, although they performed four inoculations, first when the primary bolts 

were approximately 5 cm tall and then once every four days.  

 

The higher transformation efficiency of 10x concentrated cultures may be due to the higher 

viscosity compared to the uncondensed culture. A more viscous medium persisted on the 

plant for a longer period and accelerated bacterial conjugation on the surface of the plant, 

which may explain the higher percentage of transformed plants in non-preconjugated 

cultures. Furthermore, in a more condensed culture the probability of bacteria entering 

floral buds is higher because more bacteria are available. 

 

Drop-by-drop inoculation may also improve transformation efficiency. By applying the 

drops of the medium directly onto emerging buds as opposed to the whole plant 

submersion, we avoid the exposure of large parts of plant tissue to the toxic effects of 

surfactant and the pathogenic effects of Agrobacterium.  

 

Compared to the 10x concentration, the 100x concentration did not prove to be very useful 

despite a relatively high percentage of transgenic plants (0.56 % for plants inoculated with 

a non-preconjugated and 0.59 % for preconjugated). In both cases, the condensed inoculum 

caused the deformation of the plants and consequently stunted growth as described later in 

the discussion.  

5.2 SEED NUMBER PER PLANT  

There was a huge variability in seed number per plant among the controls, the experiments 

and the experiments with preconjugated bacteria. The lowest number of seeds per plant 

was in the case of plants inoculated with a 100x concentration of the control strain A. 

tumefaciens GV3101 (pKP80), which produced not a single seed from four inoculated 

plants, and the highest was more than 1,200 (Table 20, Figure 25). A single Arabidopsis 

plant normally produces several hundred to several thousand seeds (Zhang et al., 2006). As 

we can see in Figure 25, the seed number per plant is not correlated with the mode of 

inoculation, nor with the concentration of bacteria, but with the generation of the plants. 

The average number of seeds per plant in the first three generations (7 October 2008, 17 

December 2008 and 6 January 2009) is more than 600, but drops to an average of less than 

100 in later generations. The seed reduction was observed in the control plants as well as in 

the experimental plants.  

 

In their protocol, Zhang et al. (2006) suggest low light intensity and too much water as 

likely causes for a case when plants produce flowers but no seeds. The environmental 
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factors in the growing chamber (temperature 21° C, relative humidity 60-70 %, 16 hours of 

light and 8 hours of dark), the light intensity and the watering protocol were constant 

throughout all the generations so we believe they are not the reason for the reduction of the 

seed number in later generations. We also did not observe any reduction in the number of 

flowers in the 12 January 2009 and later generations.  

 

The first generation (7 October 2009) was planted in sterilized Florrela green soil with 10 

% (v/v) of perlite. The 17 December 2008 and all later generations were planted in a new 

soil, Potground P Klasmann. The 12 January 2009 and later generations were planted in 

Potground P Klasmann sterilized soil because we observed some insect larvae in pots of 

other plants in the growing chamber. Sterilization destroys the natural flora of the soil as 

well as the pest larvae, and may allow pathogenic species to overproliferate (Cooley et al., 

2003), which could influence the plant performance and reduce the number of seeds. On 

the other hand, in the first generation (7 October 2009), which was also planted in 

sterilized soil, the number of seeds per plant was the highest in all generations.  

 

Clough and Bent (1998) and Zhang et al. (2006) all emphasize the importance of healthy 

plants used for floral dip. One of the possible causes for the low number of seeds could be 

a latent infection with phytopathogenic fungi or viruses. The environment in the growing 

chamber – high humidity and warmth – is ideal for the development of fungi which could 

affect the plants' overall fitness and seed production.  

 

The percentage of germinating seeds was also highly variable, from 0 % to 100 % (Table 

20, Figure 26). The selection of transgenic seeds was performed in two parts for the first 

four experiments and we observed a drop in the percentage of vital seeds in the second part 

(Figures 15, 16, 17, and 18 and Tables 7, 9, 11, and 12). The reason for this is probably in 

the sampling procedure. The bag with the dry seeds was inverted so the seeds slipped out 

in to the beaker, where imbibition took place. The seeds in the bag were mixed with chaff 

and dry plant tissue. Heavy, vital seeds were at the bottom of the bag and slipped out first, 

whereas lighter and less vital seeds or empty shells were trapped in the chaff and were used 

for the second part of the selection.  
 

There is also a big difference between the selective plates in the number of seeds and the 

germination percentage. The seeds in the water were spread on the plates with a pipette as 

described in Materials and methods. Excessive water with floating seeds was then poured 

or pipetted onto the next selective plate. Again, heavy vital seeds thus remained on the first 

plate, and lighter seeds and empty shells were transmitted onto the new plate.  

 

The low percentage of germinating seeds was in some cases the consequence of fungal 

infections on the selective plates (Table 7) and cannot be attributed to a specific 

inoculation technique, concentration of bacteria, or other experimental variable. Even the 

inoculation with highly concentrated bacterial cultures (100x and 10x) did not affect the 

percentage of germinating seeds, in spite of a great effect on the number of seeds per plant. 
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5.3 SEED DISINFECTION 

Two techniques are commonly used for Arabidopsis seeds sterilization: rinsing and 

vapour-phase sterilization. Rinsing includes alcohol treatment, bleach (sodium 

hypochlorite) with surfractants, and final rinsing with sterile water, whereas in vapour-

phase sterilization chlorine fumes act as the disinfecting agent. Which technique is more 

efficient is a matter of dispute, because no study has been made considering the efficacy of 

Arabidopsis seed disinfection.  

 

In their original paper, Clough and Bent (1998) first treated the seeds with a 95 % ethanol 

for 30-60 seconds, then immersed them in 50 % bleach (2.625 % sodium hypochlorite) 

containing 0.05 % Tween 20 for 5 min, and rinsed them three times with sterile water. 

Zhang et al. (2006) and Harrison et al. (2006) used a lower-percentage ethanol (70 %), 

Desfeux et al. (2000) used isopropanol instead, and Chung et al. (2000) completely omitted 

the use of alcohol. In their protocols, Zhang et al. (2006) as well as Harrison et al. (2006) 

used a prolonged exposure of seeds to sodium hypochlorite solution: 10 minutes instead of 

Clough and Bent’s (1998) original 5 minutes.  

 

Another seed sterilization technique is the vapour-phase sterilization. Clough and Bent 

(1998) placed seeds in a desiccator jar and just prior to sealing the jar, they put in a beaker 

with bleach to which a small amount of HCl was added to produce chlorine fumes. The 

seeds were left in the jar for 4–15 hours. The whole process was carried out under a fume 

hood because of the toxic effects of chlorine gas. The same method was used by Ye et al. 

(1999) and Desfeux et al. (2000).  

 

The specific mode of action of alcohols as disinfectants is not known in details, but 

researchers think that they cause membrane damage by dissolving lipids, protein 

denaturation, and subsequent obstruction of cell metabolism (McDonnell and Russell, 

1999). The 70 % ethanol is known to be more effective than 95 % or higher, probably 

because it passes the bacterial membrane more efficiently and denaturises not only the 

membrane proteins, but also the cytoplasmatic proteins (McDonnell and Russell, 1999). 

The isopropyl alcohol (isopropanol) is considered slightly more efficient against bacteria 

than ethyl alcohol (ethanol), probably because of its greater lipophilic properties 

(McDonnell and Russell, 1999). The higher alcohols are more germicidal than ethyl 

alcohol: their effectiveness is in correlation with their molecular weight. Since alcohols of 

molecular weight higher than propyl alcohol are not soluble in water in all proportions 

(Pelczar et al., 1986), they are not very widely used.  

 

The surfractants like Tween 20 or Tween 80 are nonionic detergents which reduce surface 

tension and ease the way for the disinfectants to penetrate the membranes and increase 

their efficiency (Helenius et al., 1979).  

 

Sodium hypochlorite and chlorine fumes belong to the class of halogen-releasing 

disinfectants. They are highly active oxidising agents and they destroy the protein 

structure, form chlorinated derivatives of nucleotide bases, and disrupt oxidative 

phosphorylation (McDonnell and Russell, 1999). Depending on the concentration of 

chlorine and the pH these substances are sporocidal as well (McDonnell and Russell, 
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1999). The antimicrobial effect of chlorine is based on the formation of hypochlorous acid 

in water. The hypochlorous acid is then decomposed and releases oxygen, which is a 

strong oxidising agent and it destroys the cellular constituents of bacteria. The disinfecting 

effects are also the consequence of the binding of chlorine to the proteins in the cell 

membrane and to the enzymes (Pelczar et al., 1986).  

 

As mentioned, no data exists on the efficiency of Arabidopsis seed sterilization or on 

possible detrimental effects of disinfecting agents on seed vigour. Extensive research on 

seed sterilisation and disinfecting has been made on cereals, pulses, and other 

agriculturally important plants (Cantore et al., 2009; Van Der Wolf et al., 2008; Piernas 

and Guiraud, 1997), which may be used as a guide for research on Arabidopsis seeds.  

 

We used the rinsing method of disinfection for our experiments because of its safety and 

simplicity in comparison to the vapour-phase sterilisation. Vapour-phase sterilisation is 

potentially hazardous because of the formation of the highly toxic chlorine gas and there is 

no indication that it is more effective than rinsing.  

Despite the sterilisation of seeds, some bacteria may survive on or in the seed, so 200 µl/ml 

of the antibiotic cefotaxime was added to the selective medium to prevent bacterial growth 

on the selective plates. Cefotaxime has a relatively low toxicity for plants and is widely 

used to prevent bacterial growth in plant tissue cultures (Okkels and Pedersen, 1987; 

Danilova and Dolgikh, 2004). Instead of cefotaxime some authors use carbenicilin (Zhang 

et al., 2006).  

5.4 SEED SPREADING ON THE SELECTIVE PLATES 

The seeds were released from siliques and spread with a pipette on selective plates as was 

described in the Materials and methods section. Despite the intensive sieving some chaff 

remained mixed in with the seeds and caused some problems with the spreading of seeds 

as it got stuck in the tip of the pipette. The plant chaff which was spread on the plates with 

the seeds could be another possible source of fungal contamination as the phytopathogenic 

fungi embedded in the plant’s tissue could survive the sterilisation process.  

 

The spreading with a pipette has another disadvantage: the number of seeds sucked up into 

a 1 ml pipette tip was very variable and it was difficult to prepare selective plates with 

approximately equal number of seeds. The number of seeds per selective plate varied from 

some 60 to more than 6,000 and at higher densities the estimation of the seed number was 

difficult.  

 

As explained in section 5.3 (Percentage of the germinating seeds), the pipetting technique 

also had an effect on the percentage of the germinating seeds on the plate.  

5.5 CONTAMINATIONS ON THE SELECTIVE PLATES 

Fungal growth on the selective plates is most probably the consequence of poor seed 

disinfection. Despite thorough disinfection of seeds some bacteria and fungi survive in the 

seed and cause contamination of the seedlings. The selection of transformants was carried 
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out in the growth chamber, which ensures appropriate environmental conditions 

(temperature 21° C, relative humidity 60-70 %, 16 hours of light and 8 hours of darkness) 

not only for Arabidopsis seedlings, but also for different species of microorganisms. The 

selective medium is rich in sugars and the selective plates are sealed with Parafilm, which 

ensures high humidity, prevents the plate from drying, and retains a sterile environment. 

 

The seed disinfection is crucial for a successful selection, but the standard disinfection 

procedure with ethanol and bleach may be harmful to the seeds if they are exposed for too 

long. As explained later in section 6.1, Method improvements, some alternative procedures 

exist, although they are not optimised for Arabidopsis seed disinfection.  

5.6 EFFECT OF HIGHLY CONCENTRATED BACTERIAL CULTURES 

Highly concentrated bacterial cultures had negative effects on plant performance and 

reproductivity. The plants inoculated with a 100x concentrated bacterial culture, whether it 

was preconjugated or not, were smaller and had shrunken and deformed leaves, flowers, 

and siliques. The same effect was observed in the plants inoculated with a 100x 

concentration of the positive control GV3101 (pKP80). The 100x concentrated bacterial 

culture was like a dense paste and was applied with a pipette directly into the 

inflorescences, although it later slipped down the stem to the leaves. No similar effect was 

observed at lower concentrations, e.g. 10x or lower.  

 

Stunted growth could be attributed to the high concentration of bacteria which lead to the 

obstruction of the plants' stomata. The condensed culture later dried up and formed a thin 

film on the surface of the plants. The dense bacterial paste obstructed gas exchange 

through the stomata, covered parts of leaf surfaces, and prevented a normal photosynthesis. 

Furthermore, Agrobacterium itself is a plant pathogen and is able to enter plant cells and 

cause damage. The E. coli bacteria has also been proven to be able to enter plant tissues 

and form colonies (Solomon et al., 2002; Seo and Frank, 1999; Takeuchi and Frank, 2000; 

Cooley et al., 2003), which could further enhance the pathological effects of 

Agrobacterium infection and decreased photosynthesis.  

 

These plants also had an unusually low average number of seeds per plant (Table 20, 

Figure 25), although we cannot directly link the low seed number with the high 

concentration of bacteria. The whole of the 26 January 2009 generation, as well as the 9 

February 2009 generation, had a very small amount of seeds per plant. As discussed in the 

previous section, the exact reason for the low seed number is unknown.  

5.7 MOSAICISM 

The mosaic plants had some green and some pale leaves or green spots on the pale leaves; 

their growth was slower and had a different appearance than true transformants (Figures 17 

and 18). Mosaicism of T1 plants was observed in several cases; especially surprising were 

the mosaics from the plants inoculated with E. coli and A. tumefaciens GV3101 as negative 

controls. The significance of these plants is not known and further analysis of the plant 
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genome should be performed with molecular methods to detect if the marker gene has 

integrated.  

 

In our last experiment, where we used both bacterial cultures grown to OD600=0.8, we got 

some positive results in the plants inoculated with the negative control, the E. coli strain 

DH5α (pKP80)(pKM101). Out of 680 plants, 7 plants (1.03 %) were mosaics. These plants 

were not as green as the true transformants obtained in positive controls, but they were not 

pale enough to be considered as clearly non-transgenic.  

 

In a previous study by Koumpena et al. (2008), similar results were obtained: 4 out of 

2,160 plants or 0.19 % were mosaics. They were contributed to the cross-contamination of 

plants in the growing chamber, which would be possible by insects as vectors, or by 

touching between individual plants. Pappas and Winans (2003) also detected some slow-

growing calli from tobacco leaf explants inoculated with E. coli DH5α carrying the IncP-

type system, but all of these calli failed to grow when subcultured to new selective plates. 

The significance of mosaic plants from the study of Koumpena et al. (2008) and the slow-

growing calli from the experiments by Pappas and Winans (2003) is not known as no 

further research has been done yet. Mosaic plants were also recorded in another negative 

control, plants inoculated with A. tumefaciens strain GV3101 in experiment 8. Out of 2916 

plantlets, 11 were mosaics (0.38 %).  

 

The significance and exact cause of mosaicism is not known yet, although there are some 

suggestions as to what might be the reason. One of the possible causes of mosaicism of E. 

coli inoculated plants might be the infection of plant embryos with E. coli expressing the 

ntpII gene. The bacteria could survive on the T0 plant, infected by the developing seed and 

embryo of the T1 plant. Bacterial colonies embedded in the plant tissue could result in 

mosaicism of the plantlets. There are reports that E. coli is able to survive on a plant and 

infect the developing seeds. Cooley et al. (2003) performed experiments with E. coli on 

Arabidopsis and their results show that the inoculation of Arabidopsis roots with the E. coli 

strain O157:H7 leads to the contamination of the entire plant. Even if they infected plant 

seedlings they were then able to recover bacteria from seeds and siliques of dried mature 

plants some 60 days after germination.  

 

Mosaicism was also observed among the plants inoculated with the positive control 

GV3101 (pKP80). The reason for mosaicism may be an infection of the plant embryo in 

the stage of a small group of cells after fertilization. Agrobacteria could infect and 

transform some of the cells instead of transforming an ovule, which would lead to chimeric 

mosaic plants. As was demonstrated by several researches, the primary target of the 

Agrobacterium in the floral dip technique are the plant's female reproductive tissues 

(Desfeux et al., 2000; Ye et al., 1999), and the progeny is mostly hemizygous with T-DNA 

inserted at one allele on a given locus (Feldmann et al., 1991; Bechtold, 1993). Desfeux et 

al. (2000) carried out experiments with a mutant Arabidopsis variety in which carpel fusion 

is incomplete at the apex and the gynoecium remains open rather than becoming enclosed 

as in wild-type plants. With this mutant line, the transformation ratios were 6 times higher 

than in wild-type plants. This means that for a successful transformation, the 

Agrobacterium must have an open access to ovules. It is well known that flower initiation 

in Arabidopsis occurs continuously in an indeterminate spiral at each floral apex. With the 
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floral dip technique, we thus inoculate flowers in different developmental stages. Since the 

gynoecium is open for a relatively short interval of approximately 3.5 days and it closes 

before the stigma becomes receptive for the pollen and before the anthers develop (Smyth 

et al., 1990), the infection with Agrobacterium must occur before pollination. The 

Agrobacteria may remain in the ovary until pollination and until an embryo develops, and 

then they infect the cells of the developing embryo. Ye et al. (1999), who also reported 

several cases of mosaicism in transgenic seeds obtained by vacuum infiltration, suggests a 

similar explanation.  

 

We also observed several cases of mosaicism in the plants inoculated with a preconjugated 

and non-preconjugated mixture of Agrobacterium GV3101 and E. coli DH5α 

(pKP80)(pKM101): in a spray experiment and a positive control, in plants inoculated with 

10x concentrated preconjugated bacteria, and in plants inoculated with both cultures grown 

to OD=0.8. In the case of the 10x concentrated and preconjugated inoculum, the number of 

mosaic plants was much higher than the number of clearly transgenic plants – 21 mosaic 

plants and only one that was completely green. In all these cases, the cause was probably 

the combination of an infection with E. coli and a post-fertilization infection with 

Agrobacterium. 

5.8 THE EFFECT OF THE SURFRACTANT CONCENTRATION 

In the experiment on the sixth generation of plants (9 February 2009), we used a higher 

concentration of the surfractant Silwet
®
 L-77 (0.05 %) than in other experiments (0.02 %), 

and we observed some negative effects on the plants. After the first inoculation, the plants 

were more bent than in the other experiments and after the second and third inoculations 

we observed drying shoots, which we attributed to the higher concentration of the 

surfractant and repeated exposure. We did not observe any damage on plant tissues or any 

other negative effects on plants or their growth which could be attributed to Silwet
®
 L-77 

in experiments where 0.02 % concentration was used.  

 

Surfractants reduce the surface tension of liquids and may damage the plant's cuticle and 

epidermis. Clough and Bent (1998), who used 0.05 % Silwet
®

 L-77 in their experiments, 

also observed drying shoots and recommended a very careful use of the surfractant. 

Moreover, Desfeux et al. (2000) reported the deformation of pistils and flower mortality at 

an even lower concentration, 0.03 %. Despite the toxicity of Silwet
®
 L-77, we cannot 

completely omit its use or significantly lower its dose, since it has been proven that the 

levels between 0.02 % and 1.0 % give about 20 times greater rates of transformation than 

at 0 % or 0.005 % (Clough and Bent, 1998).  
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5.9 METHOD IMPROVEMENTS AND FURTHER RESEARCH 

5.9.1 Method improvements  

5.9.1.1 Seed disinfection and contamination prevention 

One of the major problems of the floral dip technique is still the prevention of 

contamination of the T1 seeds on the selective plates. The selective medium is rich in 

sugars and offers ideal conditions for fungal growth. 

 

Until now, no research has been done on Arabidopsis seeds disinfection, but there are 

many reports on disinfection of commercial plant seeds (Miché and Balandreau, 2001; 

Caetano-Anollés et al., 1990; Cantore et al., 2009; Van Der Wolf et al., 2008; Piernas and 

Guiraud, 1997), which can be used as guidance for research on Arabidopsis seeds. The 

potential disinfecting agents for seed disinfection are phenol and phenolic compounds, 

higher alcohols, chlorine and iodine compounds, quaternary ammonium compounds, 

aldehydes, ethylene oxide (Pelczar et al., 1986), essential oils (Cantore et al., 2009; Van 

Der Wolf et al., 2008), organic acids and plant extracts (Van Der Wolf et al., 2008), 

commercial fungicides, and physical agents such as heat (Narichika and Yoshihiko, 2002) 

and gamma irradiation (Cuero et al., 1986; Maity et al., 2009). The latter is inappropriate 

for genetic studies since gamma irradiation causes DNA damage (Sellins and Cohen, 

1987). There are some unpublished reports on microwave sterilisation of Arabidopsis 

seeds, which is claimed to be extremely effective (over 99 %) (Franco, 1993, personal 

information). Care should be taken when applying this technique since the microwaves can 

cause damage to DNA (Sagripanti et al., 1987; Sagripanti and Swicord, 1986; Lai, 1996; 

Banik et al., 2003) and microwave treatment may produce false results.  

 

Another interesting approach to contamination prevention is selection under non-aseptic 

conditions. Davis et al. (2009) used chromatography quartz and chromatography silicon 

dioxide sands saturated with MS basal salts medium without sucrose placed on petri 

dishes. Davis et al. (2009) also tried to select transformed seedlings on soil but were 

unsuccessful. Conversely, in 2011, Das and Joshi successfully performed Arabidopsis 

seedling selection in agropeat-filled soil which was pretreated with an antibiotic solution, 

without any previous seed sterilization. Soil is a complex mixture of organic and inorganic 

components and its composition varies greatly even within the same batch. The 

development and standardisation of the selective procedure in the soil is thus almost 

impossible; for a successful selection a more defined medium should be used.  

 

The selection can be further improved by disinfection of smaller batches. The seeds should 

be carefully selected, separated from chaff, counted, and then disinfected in a small test 

tube. This approach is more labour-intensive, but it would reduce the possibility of 

contamination originating from chaff and the remains of the inoculated plant tissue. This 

approach would also significantly improve seed distribution on the selective plates as the 

number of seeds would be more even. That would also ease the determination of transgenic 

plants. Zhang et al. (2006) recommend resuspension of the sterilised seeds in 0.05 % 

agarose (40 µL of seeds per ml of agarose) to reach a more uniform spread on the plate.  
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5.9.1.2 Plant growth 

 

The plants of the maternal generation were grown as was described in the Materials and 

methods section. In their protocol, Zhang et al. (2006) recommend a different approach 

which allows uniform and maximal seed germination. Seeds are either suspended in 0.05 

% (w/v) sterile agarose or sterilised and placed on a solid MS medium and left at 4° C for 3 

days. Agarose-stratified seeds are then spread onto wet soil, 20–30 seeds in a 10 x 10 cm 

pot, while seeds on the MS medium are placed in the growing chamber (16 hours light/8 

hours dark, 20° C) and left for 2 weeks. After 2 weeks the plantlets are transferred to the 

soil, with 12 seedlings per pot. The soil in the pots should be covered with a nylon mesh, 

which prevents the soil from dropping into the inoculation medium during the inoculation, 

which in turn prevents the contamination of the medium and consequently the 

inflorescences with the soil bacteria.  

 

Considering the inoculation procedure, Zhang et al. (2006) recommend re-dipping after a 

7-day interval, compared to Clough and Bent (1998), who recommend an interval of 5–6 

days. The plants are completely wrapped with stretch foil after the dip and left for 16–24 

hours. In our protocol, we merely covered the plants with plastic bags and left them 

covered for 24 hours.  

5.9.1.3 The inoculation procedure 

An interesting simplification of the classic floral dip was introduced by Davis et al. (2009). 

Instead of centrifuging down the bacterial culture and resuspending it in the infiltration 

medium, plants are dipped directly into the initial culture with a surfractant which is added 

just before the dip. This procedure is not suitable for co-inoculation because of the 

different sensitivity of bacteria to the selective markers presented in the media, but it is 

very versatile for the standard inoculation with A. tumefaciens. This protocol shortens and 

simplifies the dipping procedure and reduces the cost because there is no need to prepare 

the infiltration medium and centrifuge the growth medium.  

5.9.2 Further research 

5.9.2.1 Determination of the integration of the transgene  

The growth of dozens of transgenic plants obtained in this work, by either direct 

agrobacterial-mediated transfer or biparental transfer, was monitored at the hosting 

laboratory in subsequent subculturings on selective plates. Well-grown transgenic plants 

were finally transferred to soil pots. The plants were let to mature and grow siliques, which 

were collected for future use. Additionally, plant tissues from the same plants were cut off 

and put to deepfreeze, in order to be analyzed by molecular techniques (Southern 

hybridisation and PCR) in the near future. This will prove (i) the presence and stable 

integration of the transgene and (ii) its copy-number in each of the plants' genomes. 
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5.9.2.2 Inoculation methods 

Several different inoculation techniques and concentrations were tested in this work; 

further employment of the most yielding conditions that were found, alone or in 

combinations, could predictably increase transgenic frequencies even more. For instance, 

the spray method in combination with the preconjugated E. coli and A. tumefaciens and the 

combination of E. coli and A. tumefaciens at regular, 10-fold or even 100-fold concentrated 

cultures, should absolutely be tested, provided that culture viscosity does not obstruct the 

nozzle of the spray can. Additionally, the mere use of 10- and 100-fold concentrated 

cultures ought to be tested again by either dipping or drop-by-drop inoculation in order to 

verify their high capacity to yield increased transgenic numbers. Particularly for 100x 

cultures, the repetition of the experiment is needed in order to ascertain if such an 

increased bacterial concentration indeed imposes a negative effect in plant growth or 

impaired seed development. 
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6 CONCLUSION 

Plant transformation by co-inoculation is a novel method for obtaining genetically 

modified plants. It simplifies cloning and strain construction as it circumvents the need to 

construct Agrobacterium strains carrying binary vectors. Instead of Agrobacterium, E. coli 

cells are the source of the transgene-carrying plasmid.  

 

Several improvements were introduced in the standard floral dip procedure, which was 

used as a positive control in our experiments, and in the co-inoculation procedure. 

Compared to the standard inoculation with A. tumefaciens, concentrated cultures, repetitive 

inoculation, drop-by-drop inoculation, and the improved floral spray protocol were 

introduced. Concentrated cultures were used in concentrations of 10- and 100-fold, and an 

unconcentrated culture was used as a standard. The cultures in this experiment were 

applied with a pipette directly onto the buds and into the rosette instead of being used for 

plant submersion. Split inoculation was used in the first experiment – instead of the second 

dip after 5 or 6 days, we performed two re-dips, one 3 days after the first, and the another 

one 4 days after the second dip. Clough and Bent (1998) reported detrimental effects on 

plants dipped at intervals of every four or less days over a period of two weeks and lower 

transformation efficiency (0.5 % or lower). We observed no such effects and a 

transformation efficiency of 2.18 %, which is comparable to the standard floral dip at an 

interval of 5 or 6 days (Clough and Bent, 1998). The floral spray technique, first reported 

by Chung et al. in 2000, was also improved. Chung and co-workers sprayed the plants 

from the distance of 20–30 cm three times at interval of 8 hours and reached a 

transformation efficiency of an average 2.41 %. We sprayed the plants from a distance of 

4-5 cm twice at an interval of 5 days. This approach proved to be effective and yielded 

3.44 % of transgenics.   

 

Improvements were also introduced in the co-inoculation technique: the best-yielding A. 

tumefaciens strain (GV3101) was employed and left to mate with the E. coli donor strain in 

planta or prior to plant infection, at conditions optimal for this particular set of parents. 

Additionally, concentrated cultures, split inoculation, spraying, a changed donor-recipient 

ratio, and a higher Silwet
®
 L-77 content were applied, as before. Finally, a donor-recipient 

ratio shift was attempted in one experiment, where both cultures contributed to the 

transformation at almost equal cell ratios. In all experiments conducted in this work, a 

novel rapid method for seed identification was followed (Harrison et al., 2006). This 

method shortens the time needed for identification of transgenic plantlets from 7 to 10 days 

to only 4 days. 

 

Overall, inoculation by spraying and raising the bacterial cell concentrations 10x to 100x 

proved to be the most promising introduction in our technique development for both Atmt 

infections and co-infections. The high culture concentration, in combination with drop-by-

drop inoculation that protects large areas of the plant tissue from the surfractant, seems to 

be the most favourable for co-inoculation with Agrobacterium and E. coli. Particularly in 

the last case, the previously recorded rarely occurring transgenesis instances were now 

raised to that of lower levels of regular Atmt infections, thereby testifying to the 

applicability of this novel method. 
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7 SUMMARY (POVZETEK) 

7.1 SUMMARY 

Arabidopsis thaliana is a widely used model plant in genetic research and is routinely 

transformed by using Agrobacterium-mediated transformation methods. It belongs to the 

mustard or crucifer family (Brassicaceae) which comprises many economically important 

species. Agrobacterium tumefaciens is a soil phytopatogenic bacterium which causes 

crown gall disease in dicot plants by transfer and integration of a segment (T-DNA) of its 

tumour inducing (Ti) plasmid into the host's genome, resulting in the formation of tumours. 

The removal of T-DNA genes from the plasmid prevents tumour formation but it does not 

affect the ability of DNA transfer into the host – these plasmids are termed ‘disarmed’. 

Another crucial component for a successful Agrobacterium-mediated gene transfer are the 

vir genes which can reside on separate plasmids called binary Ti vector systems. The 

desired genes are located on T-DNA, provided on a small shuttle vector that can replicate 

in both E. coli and A. tumefaciens. The shuttle vector must carry the selectable markers 

appropriate for selection in E. coli and A. tumefaciens.   

 

Agrobacterium-mediated transformation methods involve vector and transgene 

construction steps in Escherichia coli and later the introduction of the desired constructs 

into A. tumefaciens for further transfer to the plant. To avoid this step, a novel method was 

introduced by Pappas and Winans (2003): Nicotiana tabacum leaf discs were transformed 

using a conjugative E. coli strain as the T-DNA and transgene carrying host and a disarmed 

A. tumefaciens strain as an in situ conjugal mediator for the transfer of the transgene to the 

plant. Later, this technique was adapted for the transformation of Arabidopsis thaliana 

using the floral dip method: an optimal media composition, strain combination, mating 

duration, and temperature; and E. coli : A. tumefaciens ratios were tested (Koumpena et al., 

2008). In the present study, different inoculation techniques, concentrations of bacterial 

cultures, and preconjugated and non-preconjugated cultures were tested in order to increase 

transformation efficiency and with that the possible applications of the E. coli – A. 

tumefaciens co-inoculation principle. 

 

The Arabidopsis thaliana plants, sown in the soil, were inoculated approximately 30 days 

after planting and reinoculated one or two times after several days with A. tumefaciens 

GV3101 and E. coli DH5α (pKM101)(pKP80) or with A. tumefaciens GV3101 (pKP80) as 

a positive control. A. tumefaciens and E. coli cultures were harvested at appropriate OD600 

and then either left in the incubator for conjugation or resuspended in the inoculation 

medium and used for the inoculation of the plants. Different inoculation techniques (floral 

dip, spray, or drop-by-drop inoculation), inoculum concentrations (1x, 10x, 100x), 

repetitions (one or two reinoculations), surfractant concentration (0.02 or 0.05 %), and 

OD600s of the bacterial cultures at the harvest were tested. Control plants were inoculated 

with A. tumefaciens GV3101 (pKP80) in the same manner. Seeds from the transformed 

plants were collected some 7-8 weeks after inoculation and screened for transgenics on the 

selective plates with kanamycin as a selective marker.  
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The concentration of bacterial cultures in association with drop-by-drop inoculation proved 

to be most effective way to reach high percentages of transgenic plants. The highest 

percentage of transgenic seeds was 10.58, yielded by plants inoculated with non-

preconjugated 10-fold concentrated inoculum. The same concentration of preconjugated 

cultures yielded 0.33 % transgenic seeds. The concentrated inoculum proved to be efficient 

also in plants inoculated with the preconjugated culture as plants inoculated with 100-fold 

concentrated inoculum yielded 0.59 % of transgenics, which was the highest percentage 

among the preconjugated cultures. The 100-fold concentrated non-preconjugated inoculum 

yielded 0.56 % of transgenics. The highest percentage in positive control plants was 7.69 

% in plants inoculated with a 10-fold concentrated culture. The use of a very dense 100-

fold concentrated inoculum had detrimental effects on plant health: plants were smaller and 

had shrunken and deformed leaves, which was not observed in the 10-fold or 

unconcentrated inoculum. Unconcentrated non-preconjugated co-inoculated plants yielded 

transgenic seeds only in the spray experiment, where transformation efficiency was 0.06 

%. The corresponding positive control in this experiment yielded 3.44 % of transgenics. 

Out of four experiments (2
nd

, 4
th

, 7
th

 – with a 1x concentration, and 8
th

) where plants were 

inoculated with preconjugated unconcentrated cultures two yielded transgenic seeds. The 

percentage of transgenics was 0.05 in the 4
th

 experiment and 0.16 in the 8
th

 experiment. In 

the 8
th

 experiment both cultures were grown to the OD600 0.8. The plants inoculated with 

A. tumefaciens GV3101 (pKP80) as a positive control in many cases yielded no 

transformants (26 January 2009 generation both 1x and 100x concentrated controls, and 

10x concentrated control for AEC experiment). Otherwise the percentage of transgenic 

positive control plants inoculated by dipping was from 0.57 to 2.18.  

 

The percentage of germinating seeds and the number of seeds per plant were highly 

variable. The average number of seeds per plant dropped after the 3
rd

 generation for 

unknown reasons. The percentage of germinating seeds was ranging from 0 to 100, with 

large differences also between the selective plates. In some cases the low germination ratio 

can be attributed to fungal infections of the selective plates.  

 

Among the clearly transgenic plants some mosaic plants were observed in several cases. 

Mosaic plants were greener than clearly non-transgenic plants, and persisted longer on the 

selective plates. In comparison with the clearly transgenic plants they grew slower, were 

not well developed, and not uniformly green. Mosaics appeared among co-inoculated 

plants and in positive and negative controls, and their exact cause is not yet known. 

 

The Agrobacterium - E. coli co-inoculation technique proved to be efficient in generating 

genetically modified plants. E. coli cells are the source of the transgene-carrying plasmid, 

which is especially convenient when large plasmids which are unstable in Agrobacterium 

strains are used. The technique simplifies cloning and strain construction as it circumvents 

the need to construct Agrobacterium strains carrying binary vectors.  
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7.2 POVZETEK 

Navadni repnjakovec (Arabidopsis thaliana) je zelnata trajnica iz družine križnic 

(Brassicaceae), v katero je uvrščenih mnogo pomembnih kmetijskih rastlin. A. thaliana je 

zaradi majhnega genoma in kratkega juvenilnega obdobja pomembna modelna rastlina na 

področju genetike in biotehnologije, prav tako pa jo je mogoče preprosto transformirati s 

pomočjo bakterije Agrobacterium tumefaciens.  

 

Agrobacterium tumefaciens je po Gramu-negativna talna bakterija, ki povzroča 

karakteristična tumorska tkiva pri dvokaličnicah. Bakterija vstavi del svojega genoma t.i T-

DNA, ki je del Ti plazmida (tumour inducing), v genom gostiteljske rastline. 

Transformirane celice postanejo maligne in tvorijo tumorje, iz katerih se sproščajo opini, ki 

služijo kot hrana bakterijam (Tzfira in Citovsky, 2008).  

 

Escherichia coli je eden najbolje proučenih organizmov, saj jo je preprosto gojiti in 

manipulirati ter je na voljo v mnogih različnih sevih. E. coli je ena izmed mnogih vrst 

bakterij, ki so sposobne konjugacije in s tem prenosa genetskega materiala v druge 

bakterijske vrste (Sussman, 1997). 

 

Gensko spremenjene rastline lahko pridobimo na dva načina: s transformacijo z 

Agrobacterium tumefaciens in z metodami neposrednega vnosa genov (biolistika in 

elektroporacija). Prednost metode vnosa genov z A. tumefaciens je, da lahko 

transformiramo tudi cele rastline in ne zgolj izoliranih rastlinskih tkiv kot pri metodah 

neposrednega vnosa genov. Transformacija rastlin z A. tumefaciens zahteva vstavitev 

želenega gena na plazmidu v E. coli in v naslednji fazi prenos plazmida v A. tumefaciens, 

ki je sposobna gen prenesti v rastlinski genom. Ena izmed težav te tehnike je tudi 

nestabilnost velikih genskih fragmentov v A. tumefaciens (Shibata in Liu, 2000). 

 

Gojenje rastlinskih tkiv in celic v in vitro pogojih povzroča somaklonsko variabilnost, 

poleg tega pa se in vitro kulture pogosto okužijo z glivami in plesnimi, ki jih uničijo. 

Mnogo raziskovalcev se je zato trudilo najti način, kako se izogniti gojenju rastlin in 

rastlinskih tkiv v tkivnih kulturah. Feldmann in Marks (1987) sta uspešno transformirala 

kaleča semena navadnega repnjakovca, kasneje pa so Bechtold in sod. (1993) uvedli 

transformacijo navadnega repnjakovca z vakuumsko infiltracijo. Vakuumsko metodo sta še 

poenostavila Clough in Bent (1998), ki sta nadzemne dele cvetoče rastline navadnega 

repnjakovca preprosto potopila v suspenzijo celic agrobakterije. Ta preprosta metoda je 

znana pod imenom “floral dip” in se sedaj rutinsko uporablja za transformacijo navadnega 

repnjakovca. Poleg izjemne preprostosti je prednost metode tudi, da ne povzroča zaznavnih 

sprememb, ki bi bile posledica somaklonske variabilnosti (Labra in sod., 2004).  

 

Pappas in Winans (2003) sta razvila novo metodo za transformacijo navadnega tobaka 

(Nicotiana tabacum). Listne izsečke tobaka (N. tabacum), ki je poleg repnjakovca še ena 

pomembna modelna rastlina, sta transformirala s pomočjo E. coli, ki je predstavljala 

gostitelja T-DNA in transgena, ter razoroženege seva A. tumefaciens, ki je bil in situ 

konjugacijski partner in mediator transfera genov v rastlinsko tkivo. Prednost in novost te 

metode je, da se izognemo kloniranju in konstrukciji sevov A. tumefaciens, kar je posebej 
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priročno, ko želimo uporabiti velike fragmente DNA, ki so v A. tumefaciens pogosto 

nestabilni. Pappas in Winans (2003) sta dokazala, da je s to metodo možno v in vitro 

pogojih, ki so prilagojeni rastlinskemu tkivu in so precej drugačni od naravnega okolja E. 

coli, učinkovito transformirati listne izsečke tobaka.  

 

Koumpena in sod. (2008) so metodo kasneje prilagodili za transformacijo navadnega 

repnjakovca z metodo floral dip in dokazali, da lahko E. coli in A. tumefaciens uporabimo 

tudi za in planta transformacijo celih rastlin. Učinkovitost takšne transformacije je bila 

sicer precej nizka, zato smo jo v pričujočem delu poskušali izboljšati z različnimi 

modifikacijami metode.  

 

Uporabili smo seve bakterij, ki so se v poskusu Koumpene in sodelavcev (2008) izkazali 

za najbolj učinkovite, ter testirali vpliv predhodne konjugacije bakterij na trdnih gojiščih, 

koncentracijo bakterij, način inokulacije, ter koncentracije detergenta na učinkovitost 

transformacije. Predvidevali smo, da bi ti faktorji lahko pozitivno vplivali na učinkovitost 

transformacije.  

 

Materiali in metode 

 

Semena navadnega repnjakovca (Arabidopsis thaliana) ekotip Columbia 1 smo čez noč 

vernalizirali v vodi v hladilniku na temperaturi 4° C. Naslednji dan smo jih posejali v 

lončke ter pokrili s prozornim plastičnim pokrovom, ki je vzdrževal primerno zračno 

vlago, ter jih postavili v rastno komoro (21° C, relativna vlažnost 60-70 %, 16 ur svetlobe 

in 8 ur teme). Po 5-7 dneh, ko so rastlinice dosegle stadij dveh listov, smo po štiri rastline 

presadili v nove lončke, v katerih so rasle do konca poskusa.  

 

Prvo inokulacijo smo izvedli ob starosti približno 30 dni, ko so imele rastline primarne 

poganjke višine 2-10 cm in nekaj odprtih cvetov. Druga inokulacija je bila v večini 

primerov izvedena po petih ali šestih dneh, le v prvem in osmem poskusu smo izvedli tri 

inokulacije. Pri prvem poskusu je bila druga inokulacija po treh dneh in tretja štiri dni za 

prvo, pri osmem poskusu pa sta si inokulaciji sledili v zamiku petih dni.  

 

Bakterije smo gojili v tekočem LB gojišču z ustreznimi selekcijskimi antibiotiki pod 

naslednjimi pogoji: A. tumefaciens na temperaturi 27° C v stresalnem inkubatorju (180 

obratov na minuto) in E. coli na 37° C v navadnem inkubatorju. Nekaj ur preden je kultura 

A. tumefaciens dosegla želeno gostoto, smo E. coli kulturo prestavili v stresalni inkubator, 

da smo dosegli sinhronizacijo in sta bili obe kulturi ob inokulaciji primerne gostote.  

 

Uporabili smo E. coli sev DH5α z IncN-type konjugacijskim sistemom (plazmid pKM101) 

in plazmidom pKP80, ki nosi nptII transgene za resistenco na kanamicin in IncN oriT 

regijo, ki z IncN tra sistemom omogoča mobilnost (Pappas in Winans, 2003). A. 

tumefaciens seva, uporabljena v poskusih, sta bila GV3101 in GV3101 (pKP80). E. coli 

kulturo smo uporabili, ko je dosegla OD600 0.5–0.8, A. tumefaciens pa pri 0.8–1.2. for A. 

tumefaciens, saj je to po ugotovitvi Koumpene in sod. (2008) najprimernejše razmerje za 

konjugacijo. Kulture smo centrifugirali in raztopili v infiltracijskem mediju (IM), ki smo 

mu dodali detergent. Pri poskusih s predhodno konjugacijo bakterij smo po centrifugiranju 

kulturi nanesli na trdno gojišče s filtrom in jih za 4 do 5 ur pustili v inkubatorju na 



Peternelj M. Arabidopsis thaliana transformation by Agrobacterium tumefaciens - Escherichia coli co-infection.   74 
   M.Sc.Thesis. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2014    

 

 

temperaturi 28° C, ter jih nato raztopili v infiltracijskem mediju. V nekaterih poskusih smo 

medij koncentrirali 10 ali 100 krat.  

 

Rastline smo potopili v IM za dve minuti ali pa nekajkrat popršili z razdalje nekaj cm, 

oziroma smo IM nanesli s kapalko neposredno na popke in v rozeto. Po inokulaciji smo 

rastline za 24 ur pokrili s prozorno plastično vrečko, ki je zagotavljala primerno vlažnost. 

Druga ali tretja inokulacija rastlin je potekala po enakem postopku.  

 

Kot pozitivno kontrolo (oznaka A+) smo uporabili A. tumefaciens sev GV3101 (pKP80), 

kot negativni pa A. tumefaciens GV3101 (oznaka A-) in E. coli DH5α (pKM 101)(pKP 80) 

(oznaka E). Sočasna inokulacija z A. tumefaciens GV3101 in E. coli DH5α (pKM 

101)(pKP 80) je označena z AE, sočasna inokulacija s predhodno konjugacijo pa z AEC.  

 

Semena inokuliranih rastlin smo pobrali približno dva meseca po inokulaciji, ko so bili 

luski popolnoma suhi. Rastline smo v starosti 7 do 8 tednov ovili v papirnate vrečke, v 

katere so padala zrela semena in odpadli luski. Semena smo presejali in jih sterilizirali ter 

jih s pipeto nanesli na selekcijsko gojišče s kanamicinom kot selekcijskim markerjem. 

Selekcija je potekala po skrajšanem selekcijskem protokolu (Harrison in sod., 2006).  

 

Število semen lahko ocenimo s tehtanjem na podlagi enačbe 1250 semen = 25 mg. 

Navkljub skrbnemu čiščenju je med semeni ostalo precej plev in ostankov rastlinskega 

tkiva, kar bi lahko vplivalo na rezultat zatehte, zato smo se odločili, da število semen 

določimo s štetjem. Pod selekcijske plošče z nanesenimi semeni smo vstavili papir z mrežo 

kvadratov s stranicama 1x1 cm, ki je olajšala štetje.  

 

Selekcijo smo izvedli po skrajšanem selekcijskem protokolu (Harrison in sod., 2006), ki 

traja le štiri dni. Po preteku štirih dni smo vse rastlinice, ki so bile bolj zelene od povprečja, 

prenesli na nove selekcijske plošče in jih pustili rasti še nekaj dni v rastni komori, da smo 

dobili potrditev njihove transgenosti. Selekcijo smo običajno opravili v dveh delih, da smo 

se izognili izgubi celotne količine semen v primeru okužbe selekcijskih plošč s plesnijo.  

 

Rezultati 

 

Prvi poskus 7. oktober 2008 

 

Rastline, uporabljene v prvem poskusu, smo inokulirali po enaki metodi kot Koumpena in 

sod. (2008), ki temelji na standardni metodi, ki sta jo razvila Clough in Bent (1998), in je 

prilagojena za sočasno inokulacijo z A. tumefaciens in E. coli. Standardni postopek je bil 

uporabljen kot kontrola (A+, A- in E) za sočasno inokulacijo (AE). Razvojni stadij rastline 

je izjemno pomemben za uspešno transformacijo rastline in ker se ne pojavijo vsi cvetovi 

hkrati, je treba postopek ponoviti. Clough in Bent (1998) priporočata ponovitev po 5 ali 6 

dneh, v našem poskusu pa smo prvo reinokulacijo izvedli po treh dneh in drugo štiri dni 

kasneje. Ker je pretirano izpostavljanje kulturi A. tumefaciens za rastline lahko škodljivo 

(Clough in Bent, 1998), smo se odločili, da drugo inokulacijo izvedemo samo s kapljicami 

medija na popke in v rozeto rastline, prva in tretja inokulacija pa sta bili izvedeni klasično, 

s potapljanjem rastlin v medij.  
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Postopek se je izkazal za učinkovitega pri pozitivni kontroli (A+), kjer smo dobili 2,18 

odstotka transgenih rastlin, oziroma 64 transgenih rastlin od skoraj 3000 semen. Pri 

sočasno inokuliranih rastlinah nismo dobili pozitivnih rezultatov, vendar moramo pri tem 

upoštevati, da je velik delež semen (80 %) iz teh rastlin propadel zaradi plesni na gojišču. 

Pričakovano pri rastlinah, inokuliranih z negativnima kontrolama (A- in E), nismo dobili 

nobenega transgenega semena.  

 

 

Drugi poskus 17. december 2008 

 

V drugem poskusu smo kulturi A. tumefaciens GV310 in E. coli DH5α (pKM 101) (pKP 

80) predhodno konjugirali, kot je opisano v Materialih in metodah in rastline inokulirali s 

potopitvijo v IM za dve minuti. Rastline, inokulirane s pozitivno kontrolo (A+), so imele 

0,65 % transgenih semen, pri sočasno inokuliranih rastlinah pa nismo zaznali nobenega 

transgenega semena.  

 

Tretji in četrti poskus 6. januar 2009 

 

Tretji in četrti poskus smo izvedli na rastlinah, posejanih 6 januarja. Zaradi precejšnjih 

izgub semen prvega poskusa, negativnega rezultata drugega poskusa in nizkega odstotka 

transformiranih semen pri pozitivni kontroli smo se odločili, da enaka postopka izvedemo 

še enkrat. Priprava kultur, konjugacija in potapljanje rastlin je bilo izvedeno kot v prvih 

dveh poskusih, le da je bila reinokulacija v obeh primerih samo ena, in sicer pet dni po prvi 

inokulaciji.  

 

Med semeni rastlin, inokuliranih s konjugiranima kulturama, sta bili dve transgeni, kar 

predstavlja 0,05 %, pri kontrolnih rastlinah pa je bil odstotek transgenih 1,72. Rastline, ki 

so bile inokulirane z nekonjugiranima kulturama, niso imele transgenih semen, pri 

kontrolnih rastlinah pa je bil odstotek transgenih 0,57.  

 

Peti poskus 12. januar 2009  

 

Chung in sod. (2000) in Ye (2008, neobjavljeno) so poročali o precej visokih odstotkih 

transgenih rastlin navadnega repnjakovca, pridobljenih s škropljenjem, zato smo se 

odločili, da preizkusimo, ali je metoda primerna tudi za sočasno inokulacijo. Bakterijske 

kulture smo pripravili kot v prejšnjih poskusih, za inokulacijo pa smo uporabili pršilko za 

rože, ter rastline popršili z razdalje nekaj centimetrov. Med sočasno inokuliranimi 

rastlinami smo dobili 0,06 % transgenih semen, med kontrolnimi rastlinami pa 3,44 % ter 

nekaj mozaičnih rastlin.  

 

Šesti in sedmi poskus 26. januar 2009 

 

Gostota bakterijske kulture in način inokulacije sta pomembna faktorja, ki lahko vplivata 

na učinkovitost transformacije (Martinez-Trujillo in sod., 2004; Logemann in sod., 2006). 

V teh poskusih smo uporabili konjugirane in nekonjugirane kulture koncentracij 1x, 10x in 

100x, ter kapljično inokulacijo s pipeto. Kulture smo gojili in konjugirali kot v prejšnjih 
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poskusih, po centrifugaciji pa smo jih raztopili v manjši količini IM, da smo dobili 

koncentrirane raztopine, ter rastline inokulirali s pipeto.  

 

Med rastlinami, ki smo jih inokulirali z nekonjugirano kulturo so bili rezultati sledeči: pri 

inokulaciji z nekoncentrirano kulturo nismo dobili nobenega transgenega semena, pri 10x 

koncentrirani kulturi pa je bil odstotek kar 10,58, kar je tudi najvišji odstotek v vseh 

poskusih. Pri 100x koncentraciji je bil odstotek transgenih rastlin 0,56. Pri kontrolnih 

rastlinah smo transgene rastline opazili le v primeru inokulacije z 10x koncentrirano 

kulturo (7,69 %), v ostalih primerih smo opazili le mozaične rastline.  

 

Med rastlinami, ki so bile inokulirane s konjugiranima kulturama, smo pri 10x 

koncentraciji dobili 0,33 % transgenih semen ter 21 mozaičnih, pri 100x koncentraciji pa 

0,59 %. V primeru uporabe nekoncetriranih konjugiranih kultur ter pri vseh kontrolnih 

rastlinah nismo dobili nobenega transgenega semena, le nekaj mozaičnih.   

 

Osmi poskus 9. februar 2009 

 

V tem poskusu smo uporabili obe kulturi ob dosegu optične gostote OD600 0.8 ter povišano 

koncentracijo detergenta. Uporabili smo prekonjugirani kulturi (AEC) ter dve negativni 

kontroli (A- ter E), pozitivne kontrole (A+) pa zaradi tehničnih razlogov nismo uporabili.  

 

Rezultati Koumpene (Koumpena, 2010) kažejo, da je najboljše razmerje med E. coli in A. 

tumefaciens približno 1:5, kar je pri OD600 0.5 do 0.8 za E. coli ter OD600 0.8 do 1.2 za A. 

tumefaciens. V tem poskusu smo razmerje spremenili v korist E. coli na približno 1:1,4 in 

sicer da bi ugotovili, ali je lahko tako razmerje ugodnejše za konjugacijo.  

 

Koncentracija detergenta je prav tako pomemben faktor, saj koncentracija med 0,05 in 0,1 

% tudi do dvajsetkrat poveča uspešnost transformacije (Clough in Bent, 1998). Previsoka 

koncentracija lahko poškoduje rastline (Clough in Bent, 1998; Martinez-Trujillo in sod., 

2004; Chung in sod., 2000; Logemann in sod., 2006; Bartholmes in sod., 2008; Curtis in 

Nam, 2001; Davis in sod., 2009; Zhang in sod., 2006). Nobeden od avtorjev ni poročal, da 

bi koncentracija 0,05 % povzročala poškodbe na rastlinah in zato smo se odločili, da 

preizkusimo, ali pozitivno vpliva na uspešnost transformacije.  

 

Inokulacija je potekala s potapljanjem rastlin kot v drugih poskusih, vendar v dveh 

ponovitvah po petih in desetih dneh. Takoj po inokulaciji smo opazili, da so rastline 

povešene, po nekaj dneh pa smo opazili sušeče poganjke in liste. Oboje smo pripisali 

povišani koncentraciji in večkratni izpostavljenosti detergentu. 

 

Rastline, ki smo jih inokulirali s konjugiranima kulturama, so imele eno transgeno seme 

(0,16 %), ter eno mozaično rastlino. Presenetljivo, 7 mozaičnih rastlin smo zaznali tudi 

med rastlinami, inokuliranimi z negativno kontrolo DH5α (pKP80)(pKM101) (E), ter med 

rastlinami, inokuliranimi z GV3101 (A-) negativno kontrolo, kjer smo jih zaznali 11.  
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Razprava in sklepi 

 

Namen te raziskave je bil povečati učinkovitost transformacije navadnega repnjakovca z 

metodo potapljanja cvetov s sočasno inokulacijo z razoroženim sevom A. tumefaciens in E. 

coli kot donorjem transgena.  

 

O možnosti transformacije rastlin s sočasno inokulacijo z A. tumefaciens in E. coli sta prva 

poročala Pappas in Winans (2003), ki sta uporabila listne izsečke tobaka. Učinkovitost 

takšne transformacije je bila 30 do 40 krat nižja od učinkovitosti klasične transformacije z 

A. tumefaciens, vendar sta jo s predhodno konjugacijo bakterij izboljšala za približno 

trikrat. Isti princip so kasneje uporabili Koumpena in sod. (2008) in dokazali, da je to 

metodo možno prilagoditi za tehniko potapljanja cvetov in z njo transformirati cele 

rastline. Preizkusili so različna seva A. tumefaciens in našli optimalno razmerje med E. coli 

in A. tumefaciens ter najprimernejše pogoje za konjugacijo bakterij in sestavo medija ter 

pridobili 0.002 %-0.004 % transgenih rastlin (Koumpena in sod., 2008; Koumpena 2010). 

V naši raziskavi smo poskušali najti primerno koncentracijo inokulacijskega medija ter 

najprimernejši način inokulacije, ki bi odstotek transgenih rastlin povišali.  

 

Odstotek transgenih rastlin 

 

Koumpena in sod. (2008) so dokazali, da 4 do 5 urna konjugacija E. coli in A. tumefaciens 

na trdnem LB gojišču z nitroceluloznim filtrom poviša uspešnost transformacije za nekaj 

desetkrat. Rezultati naše raziskave kažejo, da sta koncentracija inokuluma ter inokulacija s 

kapljicami prav tako ključna za uspešno transformacijo. Pri rastlinah, inokuliranih z 10x 

koncentriranim inokulumom, smo namreč opazili višje odstotke transformiranih semen ne 

glede na to ali sta bili kulturi prej konjugirani ali ne.  

 

Povišano učinkovitost transformacije z 10x koncentrirano kulturo morda lahko pripišemo 

večji viskoznosti. Bolj viskozna kultura se na rastlini zadrži dlje časa in pospeši 

konjugacijo bakterij na površini rastline. To morda lahko pojasni višji odstotek transgenih 

rastlin ob uporabi nekonjugiranih kultur v primerjavi s konjugiranimi. Pri uporabi bolj 

koncentriranih kultur je tudi možnost okužbe popkov z bakterijami večja, saj je bakterij 

preprosto več kot pri manjši koncentraciji.  

 

Ugodne učinke kapljične inokulacije na transformacijo so opazili že Martinez-Trujillo in 

sod. (2004). S kapljično inokulacijo se izognemo izpostavljanju cele rastline toksičnim 

učinkom detergenta ter patogenim učinkom agrobakterij.  

 

V primerjavi z 10x koncentracijo se 100x koncentracija navkljub relativno visokemu 

odstotku transgenih rastlin (0.56 % pri rastlinah, inokuliranih z nekonjugiranima in 0.59 % 

pri rastlinah, inokuliranih s konjugiranima kulturama) ni izkazala za zelo učinkovito. V 

obeh primerih je namreč močno koncentriran inokulum povzročil deformacijo listov, 

poganjkov in luskov ter zakrnelo rast. Enake simptome smo opazili tudi pri rastlinah, 

inokuliranih s 100x koncentrirano pozitivno kontrolo GV3101 (pKP80). 

 

Močno koncentrirana kultura bakterij je bila zelo viskozna in gosta in je prekrila rastlinsko 

tkivo ter ovirala izmenjavo plinov ter fotosintezo. Inokulum se je kasneje na rastlini posušil 



Peternelj M. Arabidopsis thaliana transformation by Agrobacterium tumefaciens - Escherichia coli co-infection.   78 
   M.Sc.Thesis. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2014    

 

 

in tvoril tanek film. A. tumefaciens rastlinski patogen, ki škoduje rastlinam, pa tudi za E. 

coli bakterije je dokazano, da lahko vstopijo v rastlinsko tkivo in tvorijo kolonije (Solomon 

in sod., 2002; Seo in Frank, 1999; Takeuchi in Frank, 2000; Cooley in sod., 2003), kar bi 

lahko še pospešilo škodljive vplive agrobakterije. 

 

Te rastline so imele tudi nenavadno nizko število semen na rastlino, čeprav števila semen 

ne moremo neposredno povezati s koncentracijo inokuluma. Celotna generacija rastlin, 

posejanih 26. januarja 2009, je imela nenavadno nizko število semen. Število semen na 

rastlino je bilo sicer zelo variabilno, vendar kaže, da ni povezano z načinom inokulacije, 

koncentracijo ali katero od drugih spremenljivk, temveč od generacije rastlin. Povprečno 

število semen je namreč iz generacije v generacijo vztrajno padalo pri vseh rastlinah, ne 

glede na to ali so bile inokulirane z konjugiranima ali nekonjugiranima kulturama ali s 

kontrolnim sevom. V prvih treh generacijah je povprečna količina semen nad 600 na 

rastlino, v kasnejših generacijah pa pade na manj kot 100. Zhang in sod. (2006) omenja, da 

je slaba osvetljenost in presežek vode lahko vzrok, da rastline sicer cvetijo, vendar nimajo 

semen. Razmere v rastni komori in režim zalivanja so bili sicer med vsemi poskusi enaki in 

jih nismo spreminjali, zato verjetno niso vzrok za padec števila semen. Clough in Bent 

(1998) ter Zhang in sod. (2006) poudarjajo pomen zdravstvenega stanja rastlin na 

uspešnost transformacije. Eden od možnih vzrokov za nizko število semen bi lahko bila 

latentna infekcija rastlin z glivami ali virusna okužba.  

 

Odstotek kaljivih semen je bil prav tako izjemno variabilen. V primerih, ko smo selekcijo 

opravili v dveh delih, je bil odstotek kaljivih semen v drugem delu selekcije navadno 

precej nižji kot v prvem delu. Vzrok je verjetno v postopku: suha semena smo stresli v 

vodo za vernalizacijo. Pri tem so težja, vitalna semena iz vrečke spolzela prej, prazne 

lupine in lažja, slabše kaljiva semena pa so večinoma ostala ujeta v plevah in smo jih 

uporabili v drugem delu selekcije.  

 

Precejšnje razlike v odstotku kaljivih semen so bile tudi med posameznimi selekcijskimi 

ploščami. Vernalizirana semena smo s pipeto nanesli na selekcijsko gojišče ter odpipetirali 

odvečno vodo z plavajočimi semeni. Težja, kaljiva semena so ostala na selekcijski plošči, 

lažja in manj vitalna pa so plavala v tekočini in smo jih prenesli na novo ploščo.  

 

V nekaterih primerih je bil nizek odstotek kaljivosti posledica okužbe selekcijskih plošč s 

plesnimi. Odstotka kaljivih semen ne moremo povezati s specifično koncentracijo, 

načinom inokulacije ali katerokoli drugo spemenljivko. Razvoj plesni na gojišču je 

najverjetneje povezan z nepopolno dezinfekcijo semen. Za razkuževanje semen se 

uporabljajo etanol, belilo ter detergenti, ki pa lahko poškodujejo semena, če je 

izpostavljenost predolga. Navkljub pazljivi dezinfekciji spore gliv in plesni preživijo v 

semenu in med selekcijo okužijo rastlinice.  

 

Zaenkrat ni nobenih poročil o učinkovitosti različnih metod dezinfekcije semen navadnega 

repnjakovca, obstaja pa precej raziskav dezinfekcije semen kmetijsko pomembnih rastlin 

(Miché in Balandreau, 2001; Caetano-Anollés in sod., 1990; Cantore in sod., 2009; Van 

Der Wolf in sod., 2008; Piernas in Guiraud, 1997), ki bi lahko služile kot ideje za raziskave 

na repnjakovcu. Poleg različnih kemičnih sredstev kot so fenol in fenolne spojine, višji 

alkoholi, klorove in jodove spojine (Pelczar in sod., 1986), so potencialno uporabne tudi 
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fizikalne metode, kot so gama žarki (Cuero in sod., 1986; Maity in sod., 2009) in 

mikrovalovi (Franco, 1993, osebna informacija). Tretma s fizikalnimi agensi lahko 

povzroči poškodbe DNA (Sagripanti in sod., 1987; Sagripanti in Swicord, 1986; Lai, 1996; 

Banik in sod., 2003) in zato je vprašljiva njegova primernost za genetske študije.  

 

Drug pristop k preprečevanju okužb na gojišču je selekcija nerazkuženih semen v 

nesterilnih pogojih na kromatografskem pesku (Davis in sod., 2009) ali celo v zemlji s 

selekcijskim markerjem (Davis in sod., 2009; Das in Joshi, 2011), vendar taki pristopi še 

niso standardizirani in tudi ne vedno uspešni.  

 

Mozaične rastline 

 

Mozaične rastline so imele nekaj zelenih in nekaj svetlih listov ali pa zelene pege na 

drugače svetlih listih. Rasle so počasneje kot transgene rastline in so se razlikovale od njih 

kot tudi od netransgenih rastlin. Mozaične rastline so se pojavile v kar nekaj primerih, 

posebej presenetljiv je bil pojav mozaikov med rastlinami, inokuliranimi z negativnimi 

kontrolami E. coli in A. tumefaciens GV3101.  

 

V študiji Koumpena in sod. (2008) so prav tako zaznali mozaike in jih pripisali 

kontaminaciji v rastni komori. Pappas in Winans (2003) sta pri svojih poskusih med 

listnimi izsečki, inokuliranimi z E. coli DH5α z IncP-type sistemom, zaznala nekaj počasi 

rastočih kalusov, ki pa so propadli po prenosu na sveže selekcijsko gojišče. Pomen teh 

rastlin in kalusov še ni znan, zato so potrebne nadaljnje raziskave.   

 

Natančen vzrok za nastanek mozaičnih rastlin ni znan, možnih razlag je kar nekaj. Eden 

možnih vzrokov je okužba zarodka rastline z E. coli, ki izraža ntpII gen. Bakterije bi lahko 

preživele na T0 rastlini in okužile semena ter T1 rastlino. Obstajajo namreč poročila, da 

lahko E. coli preživi na repnjakovcu in okuži nastajoča semena (Cooley in sod., 2003). 

 

Mozaične rastline smo opazili tudi med rastlinami, inokuliranimi z GV3101 (pKP80) 

pozitivno kontrolo. Vzrok bi bil lahko okužba rastlinskega embrija v stadiju nekaj celic. 

Primarna tarča okužbe z agrobakterijo pri tehniki potapljanja cvetov je sicer ovarij matične 

rastline (Desfeux in sod., 2000; Ye in sod., 1999) in potomci so večinoma hemizigotni s T-

DNA na enem lokusu (Feldmann in sod., 1991; Bechtold, 1993). Agrobakterije bi lahko 

preživele v ovariju in kasneje okužile že nastajajoči embrio, kar bi povzročilo nastanek 

mozaičnih rastlin. Ye in sod. (1999), ki je prav tako poročal o mozaičnih rastlinah po 

vakuumski infiltraciji, je ponudil podobno razlago za njihov nastanek. Mozaiki so se 

pojavili tudi pri sočasno inokuliranih rastlinah, kjer bi vzrok lahko bil kombinacija zgoraj 

naštetih razlogov.  

 

Sklepi 

 

V standardno in v sočasno inokulacijsko metodo genskega spreminjanja navadnega 

repnjakovca s potapljanjem cvetov smo uvedli nekaj izboljšav. Preizkusili smo inokulacijo 

s koncentriranimi kulturami, večkratno ponovitev inokulacije, inokulacijo s kapljicami, ter 

inokulacijo s škropljenjem. Pri poskusu s koncentriranimi kulturami smo uporabili 10 in 

100-krat koncentrirane kulture, ter nekoncentrirane kulture, ki so bile uporabljene kot 
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standard. Zaradi viskoznosti koncentriranih kultur smo rastline inokulirali po kapljicah s 

pipeto neposredno v rozeto in na popke. Večkratno ponovitev inokulacije smo uporabili v 

prvem poskusu. Namesto reinokulacije po 5 ali 6 dneh, smo rastline ponovno inokulirali po 

3 dneh ter še enkrat čez 4 dni. Clough in Bent (1998) sta sicer poročala o škodljivih 

učinkih prepogoste izpostavljenosti rastlin kulturi agrobakterij in nižjim odstotkom 

transgenih rastlin, pridobljenih na ta način. V našem poskusu teh negativnih učinkov nismo 

zaznali, učinkovitost transformacije pri kontrolnih rastlinah pa je bila 2,18 %, kar je 

primerljivo z rezultati standardne metode. Izboljšali smo tudi metodo inokulacije s 

škropljenjem cvetov, o kateri so prvi poročali Chung in sod. (2000). Chung in sod. (2000) 

so cvetove repnjakovca poškropili trikrat z razdalje 20 do 30 cm v intervalu 8 ur ter dosegli 

2,41 % transgenih rastlin. V našem poskusu smo rastline poškropili dvakrat v intervalu 

petih dni z razdalje 4-5 cm neposredno v rozeto rastline. Metoda se je izkazala za 

učinkovito, saj smo pri pozitivni kontroli dosegli 3,44 % transgenih rastlin. Izboljšave smo 

uvedli tudi v metodo sočasne inokulacije. Uporabili smo sev A. tumefaciens (GV3101), ki 

se je izkazal za najbolj primernega za konjugacijo z E. coli, ter ju konjugirali v optimalnih 

pogojih (Koumpena in sod., 2008; Koumpena, 2010). Kot pri kontrolnih rastlinah smo tudi 

pri sočasni inokulaciji preizkusili različne koncentracije, ponovitev inokulacije, škropljene, 

ter dodatno še spremenjeno razmerje med donorji ter recipienti. Za identifikacijo 

transgenih rastlin smo v vseh primerih uporabili kratki selekcijski protokol, ki omogoča 

identifikacijo v štirih dneh (Harrison in sod., 2006). Inokulacije rastlin s koncentriranimi 

kulturami ter inokulacija s škropljenjem so se izkazali za najbolj obetajoče pristope za 

sočasno inokulacijo in klasično inokulacijo. Visoka koncentracija kultur v kombinaciji s 

kapljično inokulacijo prepreči stik večine površine rastline z agrobakterijo in detergentom, 

s čimer se izognemo toksičnim učinkom le-teh. S to tehniko smo dosegli odstotke 

transgenih rastlin, primerljive z odstotki, pridobljenimi s klasično metodo, kar nakazuje, da 

je primerna za praktično uporabo.  
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ANNEX A 

 
The percentage of transgenic T1 control plants (A+) on different selective plates and in different parts of the 

selection for the first four experiments. The red bars represent the percentage of transgenic plants on the 

selective plates from the first part of the selections and the yellow bars show results from the second part. 

The percentages of transgenic plants are generally higher in the first part of the selection and lower in the 

second part. The differences between the plates are bigger in the first part of the selection, whereas the 

second part is more uniform. The bars represent experiments in the order listed in the key on the right side of 

the graph. The experiments are labeled as follows: Ex1; 1st part; pl.1 – first experiment, first part of the 

selection, selective plate 1. The further experiments are labeled in the same manner. 

 

Odstotek transgenih kontrolnih T1 rastlin (A+) na selekcijskih ploščah v obeh delih selekcije. Obravnavani so 

prvi štirje poskusi. Rdeči stolpci predstavljajo odstotek transgenih rastlin na selekcijsih ploščah v prvem delu 

selekcije, rumeni pa v drugem delu selekcije. Odstotek transgenih rastlin je splošno v prvem delu višji, v 

drugem pa nižji. Razlike med posameznimi ploščami so bolj izražene v prvem delu selekcije, v drugem delu 

pa so manjše. Stolpci predstavljajo poskuse po vrsti kot so v legendi na desni strani grafa. Poskusi so 

označeni po ključu: Ex1; 1
st
 part; pl.1 – prvi poskus, prvi del selekcije, selekcijska plošča 1. Ostali poskusi so 

označeni po istem principu. 
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ANNEX B 

 

The percentage of vital seeds from control plants (A+) on the selective plates in regard to the part of the 

selection. Red bars represent the percentage of vital seeds in the first part of the selection, while yellow bars 

represent the second part of the selection. The percentage of vital seed is generaly higher in the first part of 

the selection and drops in the second part. The bars represent experiments in the order listed in the key on the 

right side of the graph. The experiments are labeled as follows: Ex1; 1st part; pl.1 – first experiment, first part 

of the selection, selective plate 1. The further experiments are labeled in the same manner. 

 
Odstotek kaljivih semen pri kontrolnih rastlinah (A+) v odvisnosti od dela selekcije. Rdeči stolpci 

predstavljajo odstotek v prvem delu selekcije, rumeni pa v drugem delu. Odstotek kaljivih semen je v 

povprečju višji v prvem delu selekcije in nižji v drugem. Stolpci predstavljajo poskuse po vrsti kot so v 

legendi na desni strani grafa. Poskusi so označeni po ključu: Ex1; 1
st
 part; pl.1 – prvi poskus, prvi del 

selekcije, selekcijska plošča 1. Ostali poskusi so označeni po istem principu. 

 

 
 


