UNIVERZA V LJUBLJANI BIOTEHNIŠKA FAKULTETA ŠTUDIJ BIOTEHNOLOGIJE

Saša REZELJ

OPREDELITEV ZGRADBE IN DELOVANJA MUTANTA LISTERIOLIZINA O Y406A

MAGISTRSKO DELO

Magistrski študij – 2. stopnja

Ljubljana, 2014

UNIVERZA V LJUBLJANI BIOTEHNIŠKA FAKULTETA ŠTUDIJ BIOTEHNOLOGIJE

Saša REZELJ

OPREDELITEV ZGRADBE IN DELOVANJA MUTANTA LISTERIOLIZINA O Y406A

MAGISTRSKO DELO Magistrski študij – 2. stopnja

STRUCTURAL AND FUNCTIONAL CHARACTERISATION OF LISTERIOLYSIN O Y406A MUTANT

M. Sc. THESIS Master Study Programmes

Ljubljana, 2014

Magistrsko delo je zaključek magistrskega študijskega programa 2. stopnje Biotehnologija.

Po sklepu komisije za študij 1. in 2. stopnje je bil za mentorja magistrskega dela imenovan prof. dr. Gregor Anderluh, za somentorico dr. Marjetka Podobnik in za recenzentko prof. dr. Kristina Sepčić.

Komisija za oceno in zagovor:

Predsednik:	prof. dr. Branka JAVORNIK Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo
Član:	prof. dr. Gregor ANDERLUH Kemijski inštitut, Laboratorij za molekularno biologijo in nanobiotehnologijo
Članica:	dr. Marjetka PODOBNIK Kemijski inštitut, Laboratorij za molekularno biologijo in nanobiotehnologijo
Članica:	prof. dr. Kristina SEPČIĆ Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za biologijo

Datum zagovora:

Delo je rezultat lastnega raziskovalnega dela. Podpisana se strinjam z objavo svojega magistrskega dela na spletni strani Digitalne knjižnice Biotehniške fakultete. Izjavljam, da je delo, ki sem ga oddala v elektronski obliki, identično tiskani verziji.

Saša REZELJ

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

- ŠD Du2
- DK UDK 577.1:579.22(043.2)=163.6
- KG biokemijska karakterizacija/Listeria monocytogenes/listerioza/citolizini/toksini/ proteini/mutanti/listeriolizin O/LLO Y406A/pH
- AV REZELJ, Saša, dipl. bioteh. (UN)
- SA ANDERLUH, Gregor (mentor)/PODOBNIK, Marjetka (somentorica)
- KZ SI-1000 Ljubljana, Jamnikarjeva 101
- ZA Univerza v Ljubljani, Biotehniška fakulteta, Študij biotehnologije
- LI 2014
- IN OPREDELITEV ZGRADBE IN DELOVANJA MUTANTA LISTERIOLIZINA O Y406A
- TD Magistrsko delo (Magistrski študij 2. stopnja)
- OP XIV, 101 str., 18 pregl., 64 sl., 6 pril., 123 vir.
- IJ sl
- JI sl/en
- AI Listeriolizin O (LLO) je najbolj pomemben virulenčni dejavnik bakterije Listeria monocytogenes, povzročiteljice bolezni listerioze, ki se prenaša s hrano. LLO uvrščamo v družino od holesterola odvisnih citolizinov (CDC), ki so proteini, kateri v membranah tarčnih celic tvorijo pore. LLO bakteriji omogoča pobeg iz nakisanega fagolizosoma gostitelia v citosol in razširianje v druge celice, pri tem pa ne poškoduje membrane gostiteljeve celice in s tem omogoča bakteriji razmnoževanje znotraj gostitelja. Unikatna lastnost LLO med vsemi CDC-ji je, da je njegovo delovanje odvisno od pH. LLO je namreč najbolj aktiven v kislem pH, v nevtralnem pa njegova aktivnost strmo pade predvsem pri temperaturah, višjih od 30 °C, kar je ključno za njegovo biološko aktivnost. V heterolognem ekspresijskem sistemu smo pridobili in nato opredelili lastnosti mutanta LLO Y406A. Ugotovili smo, da je LLO Y406A temperaturno manj stabilen, ter da potuje drugače pri gelski kromatografiji kot LLO WT. To nakazuje, da mutacija verjetno vpliva na konformacijo proteina in s tem na lastnosti v raztopini. Ugotovili smo tudi, da LLO Y406A tvori podobno velike transmembranske pore kot LLO WT. Posebnost LLO Y406A je v tem, da je v kislem pH njegova hemolitična aktivnost primerljiva z LLO WT, medtem ko je v nevtralnem pH mutant praktično popolnoma neaktiven, a se je sposoben vezati na membrane s holesterolom tako v kislem kot v nevtralnem pH. Posebej zanimivo je, da če smo po vezavi LLO Y406A na membrano v bazičnem okolju, torej pri pogojih, kjer mutant ni tvoril por, vzorec nakisali, je bil mutant spet sposoben tvoriti pore. Ravno ta lastnost, da je možno aktivnost mutanta skoraj izključno regulirati s pH, naredi LLO Y406A izredno zanimivega za uporabo v farmacevtske in biotehnološke namene.

KEY WORDS DOCUMENTATION

- ND Du2
- DC UDC 577.1:579.22(043.2)=163.6
- CX biochemical characterisation/*Listeria monocytogenes*/listeriosis/cytolysins/toxins/ proteins/mutants/listeriolysin O/ LLO Y406A/pH
- AU REZELJ, Saša
- AA ANDERLUH, Gregor (supervisor)/PODOBNIK, Marjetka (co-advisor)
- PP SI-1000 Ljubljana, Jamnikarjeva 101
- PB University of Ljubljana, Biotechnical Faculty, Academic Study in Biotechnology
- PY 2014
- TY STRUCTURAL AND FUNCTIONAL CHARACTERISATION OF LISTERIOLYSIN O Y406A MUTANT
- DT M. Sc. Thesis (Master Study Programmes)
- NO XIV, 101 p., 18 tab., 64 fig., 6 ann., 123 ref.
- LA sl
- Al sl/en
- AB Listeriolysin O (LLO) is the most important virulence factor of bacteria Listeria monocytogenes, which causes the foodborne disease listeriosis. LLO is a member of the family of cholesterol dependent cytolysins (CDCs), which form transmembrane pores in the membranes of the target cells. LLO enables bacteria to escape from the host phagolysosome and to spread into the neighboring cells. At the same time, it enables bacteria to reproduce within the host cells, since it does not damage the host's cell membrane. LLO is a unique protein among CDCs, because its activity is pH-dependent. LLO is the most active at acidic pH, and at neutral pH its activity is decreasing at the temperatures over 30 °C. This is the basis of its biologic activity. In a heterologous expression system, we have produced and characterized the LLO mutant Y406A. We discovered that LLO Y406A was less stable and traveled differently by gel chromatography at different pH values comparing to LLO WT. This indicates that the mutation probably effects the conformation of the protein and its behavior in a solution. We also observed that LLO Y406A forms pores with a similar size as LLO WT. A special feature of LLO Y406A is that it showed normal hemolytic activity in acid pH, whereas the activity was almost lost in the neutral pH. Interestingly, LLO Y406A was able to bind to the cholesterol-containing membranes in acid and alkaline environment. Moreover, if we bound LLO Y406A at alkali pH, where it wasn't able to form pores, we were able to activate it upon a pH change to acid. This feature, allowing us to control its activity almost only with pH change, makes LLO Y406A very appealing for pharmaceutical and biotechnological applications.

KAZALO VSEBINE

KLJUČNA	DOKUMENTACIJSKA INFORMACIJA	III	
KEY WOF	WORDS DOCUMENTATION		
KAZALO VSEBINE			
KAZALO	PREGLEDNIC	VIII	
KAZALO	SLIK	IX	
KAZALO	PRILOG	XII	
OKRAJŠA	VE IN SIMBOLI	XIII	
		23111	
1 UVOE		1	
1.1 Cl	LJI NALOGE		
1.2 D	ELOVNE HIPOTEZE		
2 PREG	LED OBJAV		
2.1 TO	OKSINI, KI TVORIJO PORE		
2.1.1	α-PFT		
2.1.2	β-PFT	4	
2.2 OI	D HOLESTEROLA ODVISNI CITOLIZINI	5	
2.2.1	Zgradba CDC-jev	6	
2.2.1.1	Primarna zgradba CDC-jev	6	
2.2.1.2	Tridimenzionalna zgradba CDC-jev		
2.2.2	Tvorba por CDC-jev	9	
2.3 LI	STERIA MONOCYTOGENES IN LISTERIOZA		
2.4 LI	STERIOLIZIN O		
2.4.1	Zgradba LLO.		
2.4.2	Tvorba por z LLO		
2.4.3	Vloga LLU.	10 10	
2.4.4 2 MATT	PH Odvisnost LLO	18 22	
5 MAIE	ATEDIALI A		
3.1 M 3.1 1	Komikolija	····· 22 22	
3.1.1	Кеппканје Сојіќа	····· 22 22	
3.1.2	Pufri raztonine reagenti		
314	Rakterijski sevi	25	
3.1.5	Plazmidi		
3.1.6	Laboratorijska oprema		
3.2 M	ETODE		
3.2.1	Transformacija bakterij, gojenje bakterij v erlenmajericah ter		
	izražanje rekombinantnih proteinov		
3.2.2	Rast proteinov v bioreaktorju		
3.2.3	Izolacija in čiščenje proteinov		
3.2.4	NaDS-PAGE		
3.2.5	Cirkularni dikroizem		
3.2.5.1	Cirkularni dikroizem		
3.2.5.2	Potek analize		
3.2.6	Preučevanje agregacije proteinov		

3.	2.7	Merjenje triptofanskega spektra	33
3.2	2.8	Analiza z diferenčno dinamično fluorimetrijo	34
3.2	2.8.1	Diferenčna dinamična fluorimetrija	34
3.2	2.8.2	Potek analize	35
3.2	2.9	Analiza z dinamičnim sipanjem svetlobe	35
3.2	2.9.1	Dinamično sipanje svetlobe	35
3.2	2.9.2	Potek analize	36
3.2	2.10	Analiza z gelsko kromatografijo	36
3.2	2.10.1	Gelska kromatografija	36
3.2	2.10.2	Potek analize	36
3.	2.11	Merjenje hemolitične aktivnosti	37
3.2	2.12	Test vezave proteinov na eritrocite	37
3.2	2.13	Test vezave proteinov na multilamelarne vezikle	37
3.2	2.13.1	Liposomi	37
3.2	2.13.2	Potek analize	38
3.2	2.14	Analiza vezave proteinov na lipidne membrane s površinsko	
		plazmonsko resonanco	39
3.2	2.14.1	Površinska plazmonska resonanca	39
3.2	2.14.2	Potek analize	40
3.2	2.15	Analiza aktivacije proteinov na membrani	41
3.2	2.16	Permeabilizacija veziklov celične velikosti	42
3.2	2.16.1	Vezikli celične velikosti (GUV-i)	42
3.2	2.16.2	Potek analize	43
3.2	2.17	Kristalizacija	44
3.2	2.17.1	Potek kristalizacije	45
4 R	EZUL	TATI	47
4.1	IZO	LACIJA IN ČIŠČENJE	47
4.	1.1	Čiščenje divjega tipa LLO z Ni-NTA afinitetno in gelsko	
		kromatografijo	47
4.	1.2	Čiščenje mutanta LLO Y406A z NiNTA afinitetno in gelsko	
		kromatografijo	49
4.	1.3	Čiščenje divjega tipa PFO z Ni-NTA afinitetno in gelsko	
		kromatografijo	52
4.	1.4	Čiščenje mutanta PFO Y381A z Ni-NTA afinitetno in gelsko	
		kromatografijo	54
4.2	CIR	KULARNI DIKROIZEM	57
4.2	2.1	CD spektri v daljnem-UV območju	57
4.2	2.2	Določanje temperaturne stabilnosti proteinov s pomočjo CD v	
		daljnem-UV območju	58
4.2	2.3	Določitev temperature tališča z merjenjem CD spektrov pri določeni	
		valovni dolžini	61
4.3	AG	REGACIJA PROTEINOV	62
4.4	TRI	PTOFANSKI SPEKTER	64
4.5	DIF	ERENĊNA DINAMIČNA FLUORIMETRIJA	65
4.	5.1	Vpliv pH vrednosti na stabilnost proteinov	66
4.	5.2	Vpliv koncentracije soli na stabilnost proteinov	66
4.6	DIN	IAMICNO SIPANJE SVETLOBE	67

4.7	GELSKA KROMATOGRAFIJA	69
4.8	HEMOLITIČNA AKTIVNOST	70
4.9	TEST VEZAVE PROTEINOV NA ERITROCITE	72
4.10	TEST VEZAVE PROTEINOV NA MULTILAMELARNE VEZIKLE	73
4.11	POVRŠINSKA PLAZMONSKA RESONANCA VEZAVE PROTEINOV NA	1
	LIPIDNE MEMBRANE	75
4.12	AKTIVACIJA PROTEINOV NA MEMBRANI	77
4.13	PERMEABILIZACIJA VEZIKLOV CELIČNE VELIKOSTI	79
4.14	KRISTALIZACIJA	81
RA	ZPRAVA	83
5.1	LASTNOSTI LLO Y406A V PRIMERJAVI Z LLO WT	83
5.2	MOLEKULSKI MEHANIZEM PH ODVISNOSTI LLO Y406A	86
5.3	BIOTEHNOLOŠKA UPORABA LLO Y406A	88
SK	LEPI	90
PO	VZETEK	92
VI	RI	93
ZA	HVALA	
PR	ILOGE	
	4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 RA 5.1 5.2 5.3 SK PO VII ZA PR	 4.7 GELSKA KROMATOGRAFIJA 4.8 HEMOLITIČNA AKTIVNOST 4.9 TEST VEZAVE PROTEINOV NA ERITROCITE 4.10 TEST VEZAVE PROTEINOV NA MULTILAMELARNE VEZIKLE 4.11 POVRŠINSKA PLAZMONSKA RESONANCA VEZAVE PROTEINOV NA LIPIDNE MEMBRANE 4.12 AKTIVACIJA PROTEINOV NA MEMBRANI 4.13 PERMEABILIZACIJA VEZIKLOV CELIČNE VELIKOSTI 4.14 KRISTALIZACIJA 5.1 LASTNOSTI LLO Y406A V PRIMERJAVI Z LLO WT 5.2 MOLEKULSKI MEHANIZEM PH ODVISNOSTI LLO Y406A 5.3 BIOTEHNOLOŠKA UPORABA LLO Y406A SKLEPI POVZETEK VIRI ZAHVALA PRILOGE

KAZALO PREGEDNIC

Preglednica 1: S	Seznam poznanih CDC-jev (Alouf, 2003; Rosado in sod., 2008)	6
Preglednica 2: H	Raztopine in pufri za transformacijo, rast in čiščenje proteinov2	23
Preglednica 3: H	Pufra za merjenje CD2	23
Preglednica 4: H	Pufra za merjenje agregacije proteinov2	23
Preglednica 5: H	Pufra za merjenje triptofanskega spektra2	23
Preglednica 6: H	Pufri za merjenje DSF	24
Preglednica 7: I	Pufra za merjenje DLS (dinamično sipanje svetlobe)2	24
Preglednica 8: H	Pufra za analizo z gelsko kromatografijo2	24
Preglednica 9: I	Pufri za merjenje hemolitične aktivnosti2	24
Preglednica 10:	Pufer za test vezave proteinov na eritrocite2	25
Preglednica 11:	Pufri za test vezave proteinov na MLV-je2	25
Preglednica 12:	Pufra za analizo vezave proteinov na lipidne membrane s površinsko plazmonsko resonanco	25
Preglednica 13:	Pufra za analizo aktivacije proteinov na membrani2	25
Preglednica 14:	Pufri za analizo permeabilizacije GUV-ov	25
Preglednica 15:	Koraki nanosa na napravi za površinsko plazmonsko resonanco Biacore X pri merjenju jakosti vezave LLO WT in LLO Y406A na LUV-e4	40
Preglednica 16:	Koraki nanosa na napravi za površinsko plazmonsko resonanco Biacore X4	41
Preglednica 17:	Tm proteinov pri pH 7,5, določena z Boltzmannovo funkcijo iz izmerjenega CD signala	52
Preglednica 18:	Hidrodinamski radij (povprečni premer števila delcev) in polidisperznost proteinov, izmerjenih z dinamičnim sipanjem svetlobe	58

KAZALO SLIK

Slika 1: Zgradbe α-PFT-jev (Parker in Feil, 2005: 94)	4
Slika 2: Zgradbe β-PFT-jev (Parker in Feil, 2005: 96)	5
Slika 3: Poravnava zaporedij nekaterih CDC-jev (Köster in sod., 2014: 5)	8
Slika 4: Tridimenzionalna zgradba PFO (PDB-ID: 1PFO) (Hotze in Tweten, 2012: 1029)) 9
Slika 5: Shematski prikaz stopenj pri tvorbi por CDC-jev (iz Tilley in sod., 2005: 254)	. 10
Slika 6: Okužba z bakterijo Listeria monocytogenes (Cossart in Lebreton, 2014: 2438)	.11
Slika 7: Aminokislinsko zaporedje LLO, kjer so označeni pomembni elementi v zgradbi (PDB-ID: 4CDB) (prirejeno po Köster in sod., 2014)	. 13
Slika 8: Kristalna zgradba LLO (PDB-ID: 4CDB) (Köster in sod., 2014: 3)	. 14
Slika 9: Model oligomerizacije LLO, tvorba obroča in vloga vijačnice PPII (Köster in sod., 2014: 11)	. 15
Slika 10: Odgovori gostitelja na zunajcelični LLO (Hamon in sod., 2012: 364)	. 18
Slika 11: Interakcije v zgradbi LLO, ki stabilizirajo oba svežnja vijačnic, ki se vstavita v membrano (TMH1 in TMH2) (Köster in sod., 2014: 6)	. 21
Slika 12: Prikaz CD spektra v daljnem-UV območju za tipične sekundarne zgradbe proteinov (Kelly in sod., 2005: 121)	. 32
Slika 13: Primer krivulje intenzitete fluorescence v odvisnosti od temperature za protein citratno sintazo v prisotnosti barvila SYPRO Orange (Niesen in sod., 2007: 2213)	. 34
Slika 14: Shematski prikaz senzograma (Beseničar in sod., 2006)	. 39
Slika 15: Nastajanje GUV-ov (Estes in Mayer, 2005: 158)	. 42
Slika 16: Kristalizacijska metoda s parno difuzijo (Cox in Phillips, 2007: 985)	. 45
Slika 17: Prva stopnja čiščenja LLO WT z Ni-NTA afinitetno kromatografijo	. 47
Slika 18: Ni-NTA afinitetna kromatografija (drugi del)	. 48
Slika 19: Gelska kromatografija LLO na koloni Superdex 200 10/300 GL	. 49
Slika 20: Očiščen LLO WT, NaDS-PAGE gel	. 49
Slika 21: Prva stopnja čiščenja LLO Y406A	. 50
Slika 22: Ni-NTA afinitetna kromatografija (drugi del)	. 51
Slika 23: Gelska kromatografija LLO Y406A na koloni Superdex 200 10/300 GL	. 51
Slika 24: Očiščen LLO Y406A, NaDS-PAGE gel	. 52
Slika 25: Prva stopnja čiščenja PFO WT	. 52
Slika 26: Ni-NTA afinitetna kromatografija (drugi del)	. 53

Slika 27: Gelska kromatografija PFO WT na koloni Superdex 200 10/300 GL	54
Slika 28: Očiščen PFO WT, NaDS-PAGE gel	54
Slika 29: Prva stopnja čiščenja PFO Y381A	55
Slika 30: Ni-NTA afinitetna kromatografija (drugi del)	56
Slika 31: Gelska kromatografija PFO Y381A na koloni Superdex 200 10/300 GL	56
Slika 32: Očiščen PFO Y381A, NaDS-PAGE gel	57
Slika 33: Primerjava CD spektrov LLO WT in LLO Y406A pri pH 5,7 in 7,5	58
Slika 34: CD spektri določanja temperaturne stabilnosti LLO WT pri pH 5,7	59
Slika 35: CD spektri določanja temperaturne stabilnosti LLO WT pri pH 7,5	59
Slika 36: CD spektri določanja temperaturne stabilnosti LLO Y406A pri pH 5,7	60
Slika 37: CD spektri določanja temperaturne stabilnosti LLO Y406A pri pH 7,5	60
Slika 38: Eliptičnost (CD signal) pri določeni valovni dolžini v odvisnosti od temperature za LLO WT	61
Slika 39: Eliptičnost (CD signal) pri določeni valovni dolžini v odvisnosti od temperature za LLO Y406A	62
Slika 40: Sipanje svetlobe v odvisnosti od naraščajoče temperature proteinov LLO WT in LLO Y406A pri pH 5,7	Г 63
Slika 41: Sipanje svetlobe v odvisnosti od naraščajoče temperature proteinov LLO WT in LLO Y406A pri pH 7,4	Г 63
Slika 42: Stolpci prikazujejo temperature, pri katerih je agregiral posamezni protein pri določenem pH-ju	64
Slika 43: V kivetah je viden oborjen vzorec LLO WT pri pH 5,7 po končani analizi	64
Slika 44: Triptofanski spekter proteinov	65
Slika 45: Fluorescentni signal DSF v obliki sigmoidne krivulje dveh paralelk na eni plošči	65
Slika 46: Temperaturna stabilnost proteinov, izmerjena z DSF, LLO WT in LLO Y406 pri različnih pH vrednostih	5A 66
Slika 47: Temperaturna stabilnost proteinov LLO WT in LLO Y406A pri različnih koncentracijah soli	67
Slika 48: Rezultati dinamičnega sipanja svetlobe	68
Slika 49: Kromatogrami vzorcev LLO Y406A, LLO WT, PFO WT in PFO Y381A	69
Slika 50: Kinetika hemolitične aktivnosti LLO Y406A in LLO WT	70
Slika 51: Hemolitična aktivnost proteinov LLO WT in LLO Y406A pri različnih pH vrednostih	71

Slika 52:	S stolpci prikazana hemolitična aktivnost proteinov LLO WT in LLO Y406A pri različnih pH vrednostih	71
Slika 53:	Hemolitična aktivnost PFO WT in PFO Y381A	72
Slika 54:	NaDS-PAGE gel vezave LLO Y406A in LLO WT na eritrocite	73
Slika 55:	Vezava LLO WT in LLO Y406A na MLV-je pri različnih pH ter vsebnostih holesterola	74
Slika 56:	Vezava proteinov na MLV-je pri pH 8,0 ter s 50 % holesterola	75
Slika 57:	SPR senzograma, na katerih je s puščicami prikazano, kaj smo injicirali ob določenem času	76
Slika 58:	SPR senzogram vezave LLO WT ter LLO Y406A pri različnih pogojih (pH 5,7; pH 7,4; 0 % holesterola, 50 % holesterola)	77
Slika 59:	Jakost vezave proteinov na lipide s 50 % ali 0 % holesterola pri pH 5,7 in 7,4	77
Slika 60:	Senzogram z označenimi frakcijami, ki smo jih zbirali na napravi SPR	78
Slika 61:	Fluorescentni signal frakcij, zbranih na SPR napravi ob vbrizganju posameznih vzorcev	79
Slika 62:	Slike permeabilizacije veziklov, posnete s konfoklanim mikroskopom	80
Slika 63:	Odstotki permeabilizacije GUV-ov za posamezen fluorescentno označen dekstran ob dodatku LLO oziroma brez pri pH 5,6	81
Slika 64:	Kristali LLO WT	82

KAZALO PRILOG

Priloga A: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core I (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Priloga B: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core II (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Priloga C: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core III (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Priloga D: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core IV (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Priloga E: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo PACT (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Priloga F: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo Cryos (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

OKRAJŠAVE IN SIMBOLI

% (m/V)	utežni odstotek
% (V/V)	volumski odstotek
Å	Ångstrem, enota za merjenje dolžine
Bis-Tris	2,2-bis(hidroksietil)-imino-tris(hidroksimetil)-metan
CD	cirkularni dikroizem
CDC	od holesterola odvisni citolizini (angl. "Cholesterol Dependent Cytolysins")
СНО	holesterol
Da	Dalton, enota za molekulsko maso
DLS	dinamično sipanje svetlobe (angl. "Dinamic Light Scattering)
DMPC	1,2-dimiristoil-sn-glicero-3-fosfatidilholin
DOPC	1,2-dioleoil-sn-glicero-3-fosfatidilholin
DOPE	1,2-dioleoil-sn-glicero-3-fosfatidiletanolamin
DPPC	1,2-di-palmitoil-sn-glicero-3-fosfatidilholin
DSF	diferenčna dinamična fluorimetrija (angl. "Differential Scanning Fluorimetry")
DTT	Ditiotreitol
EDTA	etilendiamino tetraocetna kislina
FD10	fluorescentno označen dekstran velikosti 10.000 Da
FD20	fluorescentno označen dekstran velikosti 20.000 Da
FD4	fluorescentno označen dekstran velikosti 4.000 Da
FD40	fluorescentno označen dekstran velikosti 40.000 Da
FITC	fluorescein izotiocianat
FPLC	tekočinska kromatografija za hitro ločevanje proteinov (angl. "Fast protein liquid chromatography")
GUV	vezikli celične velikosti (angl. "Giant Unilamellar Vesicles")
HEPES	N - [2-hidroksietil] piperazin-N' - [2-etan-sulfonska kislina]
HPLC	visokotlačna tekočinska kromatografija (ang. "High Pressure Liquid Chromatogrphy")
IPTG	izopropil β-D-tiogalaktozid
LLO	listeriolizin O
LUV	veliki unilamelarni vezikli (angl. "Large Unilamellar Vesicles")
Μ	molarnost
mA	miliamper, 1000 amperov, enota za električni tok
MDT	toksini, ki poškodujejo membrane (angl. "Membrane Damaging Toxins")
MES	2-morfolinoetansulfonska kislina
MLV	multilamelarni vezikli (angl. "Multilamellar Vesicles")
mol %	molski odstotek, to je molski delež pomnožen s 100
MQ	milli-Q, ultra čista voda
NaCl	natrijev klorid

NaDS	natrijev dodecilsulfat
NaDS-PAGE	poliakrilamidna gelska elektroforeza v prisotnosti NaDS
NaOH	natrijev hidroksid
NiNTA kolona	nikelj-nitrilotriocetna kovinsko-afinitetna kolona
OG	oktil glikozid
PCS	fotonska korelacijska spektroskopija (angl. "Photon Correlation
	Spectroscopy")
PFO	perfringolizin O
PFT	toksini, ki tvorijo pore v celičnih membranah (angl. "Pore Forming Toxins")
PMSF	fenilmetilsulfonil fluorid
POPC	1-palmitoil-2-oleoil-sn-glicero-3-fosfatidilholin
psi	funt na kvadratni palec (enota za tlak)
g	relativna centrifugalna sila (angl. "relative centrifugal force")
r-DHPE	rodamin B 1,2-Diheksadekanoil-sn-Glicero-3-Fosfoetanolamin
$ riangle G_u$	prosta entalpija razvitja
RT-PCR	verižna reakcija s polimerazo v realnem času (angl. "Real-Time Polymerase Chain Reaction")
RU	refrakcijska enota
SPR	površinska plazmonska resonanca (angl. "Surface Plasmon Resonance")
SUV	majhni unilamelarni vezikli (angl. "Small Unilamellar Vesicles")
TEV	virus jedkanja tobaka (angl. "tobacco etch virus")
Tm	temperatura tališča
TMH	transmembranska β -lasnica (angl. "Transmembrane β -hairpins")
Tris	2-amino-2hidroksimetilpropan-1,3-diol
UV	ultravijolično valovanje
V	volt, enota za eletrično napetost
vrt./min	vrtljaji na minuto
WT	divji tip (angl. "wild type")
ε	ekstinkcijski koeficient
θ	molarna eliptičnost (deg cm ² dmol ⁻¹)

1 UVOD

Listeria monocytogenes je patogena bakterija, povzročiteljica bolezni listerioze, ki se prenaša s hrano. Njen najpomembnejši virulenčni dejavnik je listeriolizin O (LLO), toksin, ki tvori pore v membranah s holesterolom. LLO ima ključno vlogo pri pobegu bakterije iz gostiteljevega nakisanega fagolizosoma, poleg tega pa ne poškoduje membrane gostiteljeve celice, in tako omogoča življenje in razširjanje bakterije znotraj gostitelja (Hamon in sod., 2012). Ena izmed ključnih lastnosti, ki mu omogoča takšno delovanje in ga naredi unikatnega izmed vseh od holesterola odvisnih citolizinov (CDC), je njegova pH odvisnost, ki temelji na njegovi veliki stabilnosti in posledično aktivnosti pri pH 5,5, ki je pH v fagolizosomu, medtem ko v nevtralnem pH in pri telesni temperaturi hitro agregira in se s tem deaktivira, kar je ključna osnova njegove vloge pri širitvi bakterije v gostitelju. pH odvisno delovanje divjega tipa LLO je bil predmet številnih študij (Glomski in sod., 2002; Schuerch in sod., 2005; Bavdek in sod., 2007; Bavdek in sod., 2012). Mutant LLO Y406A, ki ima na mestu 406 namesto tirozina alanin, ima pH odvisno hemolitično aktivnost, saj je aktiven v kislem in izgubi aktivnost v nevtralenm pH, medtem ko je hemolitična aktivnost divjega tipa podobna v kislem in bazičnem pH območju. Naše delo je obsegalo genetske in molekularno biološke, biokemijske ter biofizikalne metode za opredelitev zgradbe in delovanje mutanta LLO Y406A.

1.1 CILJI NALOGE

V raziskovalnem delu smo s pomočjo bakterijskega ekspresijskega sistema *Escherichia* coli pripravili čisto in homogeno varianto LLO Y406A. Poleg tega smo pripravili tudi divjo obliko LLO (LLO WT), divjo obliko LLO sorodnega proteina perfringolizina O (PFO WT) ter mutant PFO Y381A z namenom, da bi z njimi primerjali delovanje LLO Y406A. Mutant PFO, ki ima na mestu 381 namesto tirozina alanin, je analogen mutantu LLO Y406A, saj se glede na tridimenzionalno zgradbo nahaja na enaki poziciji pri LLO in PFO. Primerjali smo lastnosti zgradbe LLO Y406A in LLO WT z metodo cirkularnega dikroizma ter merjenjem triptofanskega spektra. Primerjali smo stabilnost proteinov z določanjem temperature agregacije in temperature tališča z metodo diferenčne dinamične fluorimetrije ter z merjenjem CD spektrov pri določeni valovni dolžini. Z diferenčno dinamično fluorimetrijo smo ugotavljali tudi pogoje (pH in koncetracija NaCl), pri katerih sta proteina najbolj stabilna. S pomočjo dinamičnega sipanja svetlobe smo poskušali določiti hidrodinamski radij LLO Y406A ter LLO WT. Potencialne spremembe v lastnostih zgradbe smo spremljali tudi z gelsko kromatografijo ter ju vzporedno primerjali s PFO WT in PFO Y381A. Delovanje pri različnih pH vrednostih smo primerjali med LLO Y406A, LLO WT, PFO WT ter PFO Y381A z merjenjem hemolitične aktivnosti na govejih rdečih krvnih celicah. Preverili smo zmožnost vezave poteinov na goveje rdeče krvne celice in MLV-je (multilamelarne vezikle) pri različnih pogojih z analizo različnih frakcij vzorcev s pomočjo ločbe z NaDS-PAGE. Vezavo na te delce pri različnih pogojih

pa smo preverili tudi z metodo površinske plazmonske resonance. S slednjo smo v kombinaciji z zbiranjem frakcij in merjenjem fluorecence sproščenih snovi iz liposomov zaradi nastalih por z LLO poskusili ugotoviti, ali je možno LLO Y406A aktivirati po vezavi na membrano. S spremljanjem permeabilizacije liposomov celične velikosti (GUV) smo poskusili določiti velikost por, ki jih tvorita LLO WT in LLO Y406A, oziroma velikost molekul, ki jih pore LLO še prepuščajo. Poskusili smo kristalizirati proteina LLO Y406A ter LLO WT.

1.2 DELOVNE HIPOTEZE

Preliminarne študije so pokazale, da ima LLO mutant Y406A ožje pH odvisno hemolitično aktivnost kot divji tip, saj je liziral goveje rdeče krvne celice v kislem pH, ne pa tudi v nevtralnem pH, medtem ko je bil divji tip aktiven v širokem pH območju. Ker je Y406 lociran med LLO domenama D2 in D3, kjer med tvorbo por pride do velikih konformacijskih sprememb, predvidevamo, da mutacija velike aminokisline, kot je tirozin, v alanin, lahko vpliva na zgradbo proteina, bodisi sekundarno ali pa celo terciarno zgradbo. Zaradi potencialnega vpliva na zgradbo proteina ta mutacija verjetno vpliva tudi na stabilnost in ostale biokemijske lastnosti. Predvidevali smo, da bo mutant zaradi tako velike spremembe v zgradbi stranske skupine aminokisline na mestu mutacije verjetno nekoliko manj stabilen od divjega tipa, ter da bo mutacija verjetno vplivala tudi na konformacijo oziroma obliko proteinske molekule. Predvidevali smo, da bo mutacija vplivala tudi na sam potek nastanka transmembranske pore in morda celo na obliko oziroma velikost pore. Ker se mutacija Y406A nahaja daleč stran od dela molekule LLO, ki je odgovoren za vezavo na membrano, predvidevamo, da se bo mutant vseeno vezal na lipidne membrane podobno kot divji tip tudi v nevtralnem in bazičnem okolju, v katerem mutant sicer ne tvori por. Po nakisanju tega vezanega mutanta pa je možna njegova aktivacija, torej tvorba por v membranah.

2.1 TOKSINI, KI TVORIJO PORE

Bakterije, kot tudi višji organizmi (npr. morske vetrnice in deževniki), so razvili posebne virulentne faktorje, tako imenovane toksine, ki tvorijo pore v celičnih membranah (PFT), da lahko z njimi napadejo gostitelje. Toksini, ki tvorijo pore, pripadajo družini toksinov, ki poškodujejo membrane (MDT). Ti imajo sposobnost uničenja integritete membrane številnih celic v taki meri, da celice propadejo. Posledica tega je lahko bolezen ali pa celo smrt napadenega organizma. Te toksine so najprej odkrili zaradi njihovega litičnega delovanja na človeške in živalske rdeče krvne celice ter jih zato poimenovali hemolizini. Danes je bolj v uporabi izraz citolizini, saj so sposobni poleg rdečih krvnih celic poškodovati tudi druge celice, kot so npr. levkociti. PFT-ji so sintetizirani kot vodotopni monomeri, ob stiku s tarčno membrano pa oligomerizirajo ter tvorijo poro. Da se lahko protein pretvori iz vodotopne oblike v transmembranski protein, mora preko velikih sprememb v zgradbi: topen toksin difundira do tarčne celice, na katero se veže preko specifičnega receptorja, nato v večini primerov sledi oligomerizacija, konformacijske spremembe znotraj posameznih monomernih podenot ter končno vstavitev v membrano in tvorba prevodnega kanala. Danes je znanih že veliko zgradb PFT-jev, ki se med seboj razlikujejo v primarni, sekundarni, terciarni in kvartarni zgradbi. Glede na sekundarno zgradbo, ki tvori končno poro, jih lahko uvrstimo v dve skupini: α -PFT-ji in β -PFT-je, in sicer glede na to, ali so pore zgrajene iz α -vijačnice ali β -sodčka. Znotraj posamezne skupine lahko najdemo podskupine, kot so CDC-ji (β-PFT) in aktinoporini (α-PFT). Znotraj teh podskupin najdemo ohranjena zaporedja, medtem ko PFT-ji med različnimi podskupinami nimajo podobnih zaporedij, kljub temu da imajo podoben osnovni način delovanja (Alouf, 2003; Parker in Feil, 2005; Iacovache in sod., 2008). Kljub veliki raznolikosti zvitja v zgradbah monomernih proteinov pa je zanimivo, da so številne poznane domene, ki se vežejo na membrane, ali β-sendviči ali svežnji vijačnic. To nakazuje, da so te zgradbe konsistentno učinkovite pri vezavi na membrane ne glede na celično okolje (Anderluh in Lakey, 2008).

2.1.1 α-PFT

 α -PFT-ji tvorijo pore, kjer je transmembranski kanal obdan z α -vijačnicami. Ti toksini so v veliki meri kot monomeri zgrajeni iz α -vijačnic, tisti največji toksini imajo domene za tvorbo por zgrajene iz 3 do 10 α -vijačnic, ki obdajajo hidrofobno zanko v sredini zgradbe. Ta zanka naj bi sprožila prve korake vstopa toksina v membrano (Parker in Feil, 2005). V skupino α -PFT-jev spadajo kolicini iz *Escherichia coli* (Parker in sod., 1989), aktinoporini (npr. ekvinotosin) iz morskih vetrnic (Anderluh in Maček, 2002; Kristan in sod., 2009), difterijski toksin iz *Corynebacterium diphtheriae* (Choe in sod., 1992), eksotoksin A iz *Pseudomonas aeruginosa* (Allured in sod., 1986) in insekticidni Cry toksini iz *Bacillus thuringiensis* (Li in sod., 1991) (Slika 1).

Slika 1: Zgradbe α-PFT-jev (Parker in Feil, 2005: 94) Ključni elementi v zgradbi za tvorbo por so obarvani črno. (a) Kolcin Ia. (b) Eksotoksin A. (c) Insekticidni Cry δ-endotoksin. (d) Difterijski toksin. (e) Ekvinatoksin II.

2.1.2 β-PFT

Večina poznanih bakterijskih PFT-jev danes pripada skupini β -PFT-jev. β -PFT-ji se vstavijo v membrano s tvorbo β -sodčka. Monomerne oblike teh toksinov so po večini bogate z β -strukturami. V skupino β -PFT-jev uvrščamo CDC-je, številne PFT-je iz bakterije *Staphylococcus aureus* kot je α -hemolizin, insekticidni δ -endotoksini, α -toksin iz *Clostridium septicum* ter nekateri AB tipi toksinov kot je antraks (Parker in Feil, 2005; Iacovache in sod., 2008) (Slika 2).

Transmembranske regije, ki tvorijo poro, so obarvane črno. (a) Proaerolizin iz *Aeromonas hydrophila* (Parker in sod., 1994). (b) Antraks zaščitni antigen iz *Bacillus anthracis* (Petosa in sod., 1997). (c) Perfringolizin O iz *Clostridium perfringens* (Rossjohn in sod., 1997). (d) α -hemolizin protomer iz *S.aureus*, ki je v heptamerni pori prikazan pod (e) in (f) (Song in sod., 1996). Transmembranska regija enega protomera je za lažjo predstavo obarvana črno. (g) CytB δ -endotoksin dimer iz *Bacillus thuringiensis* (Li in sod., 1996).

2.2 OD HOLESTEROLA ODVISNI CITOLIZINI

Od holesterola odvisni citolizini (CDC) uvrščamo v veliko družino toksinov, ki tvorijo pore in so ključni za patogenost številnih Gram-pozitivnih bakterij. CDC-je proizvajajo številne vrste Gram-pozitivnih bakterij, naštete v Preglednici 1. CDC gen je verjetno najbolj razširjen izmed znanih genov za toksine, kar nakazuje, da številne patogene bakterijske vrste lahko tvorijo velike pore v evkariontskih membranah, ki vsebujejo holesterol. Kako bakterijski patogeni izrabljajo toksine za povzročitev oziroma napredovanje bolezni, pa je bilo raziskano le pri nekaterih organizmih. Ključna vloga CDC-jev pri bakterijski okužbi je tvorba por, kar uniči plazemsko membrano gostiteljeve celice in s tem lizo in smrt celic. Poleg tega nekateri patogeni izločajo CDC-je, ki niso sposobni tvoriti por, kar nakazuje, da CDC-ji opravljajo tudi druge funkcije pri celičnih procesih, ki povzročajo bolezni (Hotze in Tweten, 2012). Nedavno pa so Hotze in sod. (2013) odkrili prve CDC-je tudi v Gram-negativnih bakterijah, in sicer desulfolizin (DLY) iz *Desulfobulbus propionicus* ter enterolizin (ELY) iz *Enterobacter lignolyticus*. Te organizme najdemo v anaerobni prsti, proteina DLY in ELY pa za razliko od CDC-jev iz

Gram-pozitivnih bakterij nista toksična. DLY in ELY potrebujeta holesterol za vezavo na membrane in sta citolitična, vendar nimata signala za izločanje iz bakterijske celice, in je tako najverjetneje njuna funkcija obramba pred bakterijskimi predatorji (npr. protozoji) (Hotze in sod., 2013).

			Okrajšava imena
Bakterijski rod	Vrsta	Ime toksina	za toksin
Arcanobacterium	A. pyogenes	piolizin	PLO
Bacillus	B. anthracis	antrolizin O	ALO
	B. cereus	cereolizin O	CLO
	B. sphaericus	sferikolizin	
	B. thuringiensis	turingiolizin	TLO
Brevibacillus	B. laterosporus	laterosporolizin	LSL
Clostridium	C. bifermentans	bifermentolizin	BFL
	C. botulinum	botulinolizin	BLY
	C. chauvoei	ševeolizin	CVL
	C. histolyticum	histoliticolizin O	HTL
	C. novyi A (oedematiens)	novilizin	NVL
	C. perfringens	perfringolizin O	PFO
	C. septicum	septikolizin O	SPL
	C. sordellii	sordelilizin	SDL
	C. tetani	tetanolizin	TLY
Gardnerella	G. vaginalis	vaginolizin	VLY
Listeria	L. ivanovii	ivanolizin	ILO
	L. monocytogenes	listeriolizin O	LLO
	L. seeligeri	seligeriolizin O	LSO
Paenibacillus	P. alvei	alveolizin	ALV
Streptococcus	S. canis, S. dysgalactiae, S.		
	equisimilis, S. pyogenes	streptolizin O	SLO
	S. intermedius	intermedilizin	ILY
	S. mitis	lektinolizin	LLY
	S. pneumoniae	pneumolizin	PLY
	S. suis	suilizin	SLY

Preglednica 1: Seznam poznanih CDC-jev (Alouf, 2003; Rosado in sod., 2008)

2.2.1 Zgradba CDC-jev

2.2.1.1 Primarna zgradba CDC-jev

Prvo primarno zgradbo CDC-ja so Walker in sod. objavili leta 1987 za pneumolizin iz *Streptococcus pneumoniae*. Od takrat je bilo objavljenih preko 25 različnih primarnih zgradb CDC-je v GenBank. Te zgradbe so razkrile, da se večina CDC-jev izloči iz

bakterijske celice kot topni monomer s pomočjo tipičnega signalnega peptida tipa II. Izjema je pneumolizin, saj ne vsebuje signalnega peptida in njegovo izločanje iz celice še ni v celoti pojasnjeno. Potem, ko se CDC-ji izločijo v izven-celično okolje kot topni monomeri, se začnejo združevati v komplekse oziroma agregate, ki tvorijo velike pore v membranah s holesterolom. Molekulska masa CDC-jev znaša okoli 50 do 80 kDa. Osrednja zgradba, odgovorna za tvorbo por, je velika okoli 50 kDa, vendar imajo poleg tega številni CDC-ji peptidni podaljšek na N-terminalnem koncu (Hotze in Tweten, 2012). N-terminalno zaporedje je najbolj heterogena regija CDC-jev, saj ima pri različnih toksinih tudi različno funkcijo. Streptolizin O iz Streptococcus pyogens potrebuje N-terminalno zaporedje za transport NAD-glikohidrolaze preko gostiteljske membrane (Meehl in Caparon, 2004). N-terminalni podaljšek lektinolizina iz Streptococcus mitis predstavlja lektinsko domeno za vezavo fruktoze (vezavno mesto za glikan) potrebno za tvorbo pore (Farrand in sod., 2008). N-terminalni konec pri LLO je bogat s prolini in serini, in je podoben evkariontskemu PEST zaporedju, ki je tarča za razgradnjo LLO po sprostitvi bakterije iz fagolizosoma v citosol gostitelja in tako omogoča življenje bakterije znotraj gostiteljeve celice (Decatur in Portnoy, 2000). LLO je zmožen tvoriti pore tudi v gostiteljevi membrani in je eden ključnih dejavnikov za sprožitev internalizacije bakterije v gostiteljsko celico, a pri tem ne poškoduje membrane v tolikšni meri, da bi uničil gostiteljsko celico, saj citosol gostitelja predstavlja reproduktivno okolje za L. monocytogenes (Vadia in sod., 2011). Primarne zgradbe proteinov znotraj skupine CDCjev kažejo na zelo visoko stopnjo identičnosti zaporedij, to je med 40-70 %. CDC-ji vsebujejo visoko ohranjen motiv v zgradbi iz 11 aminokislin (ECTGLAWEWWR) blizu C-terminalnega konca v domeni D4. Ta motiv se imenuje undekapeptid ali triptofanska zanka, saj je bogat s triptofani (običajno vsebuje 3) in ima vlogo pri vezavi monomera na membrano, pri čemer omogoča pravilno konformacijo motiva za vezavo na holesterol (par treonin (T515) in levcin (L516) na C-koncu) (Hotze in Tweten, 2012; Köster in sod., 2014).

Slika 3: Poravnava zaporedij nekaterih CDC-jev (Köster in sod., 2014: 5) Prve štiri vrstice prikazujejo zaporedje LLO iz rodu Listeria. Vijačnica PPII pri LLO in undekapeptid sta označena vijolično in modro. Ohranjene aminokisline v rodu Listeria so označene rdeče.

2.2.1.2 Tridimenzionalna zgradba CDC-jev

Prvo kristalno zgradbo CDC-ja so Rossjohn in sod. razrešili leta 1997 za PFO iz *Clostridium perfringens*. Do danes so določili kristalno zgradbo še intermedilizinu (ILY) iz *Streptococcus intermedius* (Polekhina in sod., 2005), antrolizinu O (ALO) iz *Bacillus anthracis* (Bourdeau in sod., 2009), suilizinu (SLY) iz *Streptococcus suis* (Xu in sod., 2010), streptolizinu O iz *Streptococcus pyogenes* (Feil in sod., 2014) ter listeriolizinu O iz *Listeria monocytogenes* (Köster in sod., 2014). Zgradba PFO (Slika 4), ki je sestavljena iz štirih domen in je bogata z β -strukturami, je postala osnovni model za biokemijsko in biofizikalno preučevanje tvorbe membranskih por (Hotze in Tweten, 2012).

Slika 4: Tridimenzionalna zgradba PFO (PDB-ID: 1PFO) (Hotze in Tweten, 2012: 1029) Označeni so: D1–D4 - domene 1–4; TMH1 in TMH2 (oranžno) – transmembranska β -lasnica 1 in 2; β 1, β 4 in β 5 – β -struktura 1, 4 in 5; α 1 – α -vijačnica 1; L1 – L3 – zanke L1–L3; dvojni glicinski motiv je prikazan z vijoličnimi atomi.

2.2.2 Tvorba por CDC-jev

Raziskave tvorbe por CDC-jev so razkrile, kako se molekule združujejo v velike komplekse, ter da so za nastanek por potrebne velike spremembe v sekundarni in terciarni zgradbi proteinov. Bakterije izločijo CDC-je v obliki topnih monomerov. Ti monomeri se v večini vežejo na površino evkariontskih celic preko holesterola kot receptorja na membrani, pri treh CDC-jih, intermedilizinu (Polekhina in sod., 2005), vaginolizinu (Gelber in sod, 2008) in lektinolizinu (Feil in sod., 2013) pa so ugotovili, da poleg holesterola potrebujejo še človeški CD59 kot receptor za vezavo in delovanje. CDC-ji imajo skupni osnovni mehanizem tvorbe por (Slika 5). Prva interakcija monomera s površino celice se zgodi s koncem domene D4, pri čemer undekapeptid in zanke L1-L3 pritrdijo monomer na membrano (Ramachandran in sod., 2002). CDC-ji imajo ohranjen preprost motiv para treonina in levcina v zanki L1, ki je potreben za specifično prepoznavanje holesterola v membrani in sprožitev od holesterola odvisne interakcije CDC-jev z membrano. Monomeri so s koncem domene D4 vezani na membrano pod pravim kotom, tako da so postavljeni navpično, in se vijačnice iz domene D3, ključne za nastanek transmebrankih β-lasnic pore, nahajajo daleč stran od membrane. Vezava na membrano povzroči spremembe v zgradbi monomera, kar vodi do intermolekularnih kontaktov med monomeri, vezanimi na membrani. Ključni premik, potreben za kontakt med dvema monomeroma, je rotacija zanke, ki jo sestavljata β 5 in α 1, stran od β 4, ki je v jedru domene D3 (Slika 4). Ta razmik omogoči, da se konec β4 združi z β1 naslednjega monomera (Ramachandran in sod., 2004). Monomeri se na ta način združujejo v oligomerno zgradbo, dokler se ne ustvari zgradba v obliki kroga, ki jo imenujemo predpora. Oligomerizira tudi do 50 monomerov v okroglo zgradbo s premerom do 300 Å. Predpora je definirana kot zaključen krožni kompleks, pri katerem se transmembranske β lasnice (TMH) še ne nahajajo v notranjosti membrane oziroma β -sodček še ni vstavljen v membrano. Šele med vstavljanjem pred-pore v poro se snopi α -vijačnic v domeni D3 razvijejo in tvorijo dve transmembranski β -lasnici (TMH1 in TMH2), ki prispevata k tvorbi velike zgradbe β -sodčka. Vsak monomer prispeva dve transmembranski β -lasnici za tvorbo transmembranskega β -sodčka. V procesu nastajanja pore iz pred-pore se zgradba domene D2 spremeni v tolikšni meri, da se domeni D1 in D3 lahko pomakneta do 40 Å bližje k membrani. Ta premik omogoči, da se β -sodček vstavi v lipidni dvosloj. Tako nastane pora CDC-jev in je največja do sedaj poznana toksinska pora (Olofsson in sod., 1993; Shepard in sod., 1998; Shatursky in sod., 1999; Heuck in sod., 2003; Czajkowsky in sod., 2004; Tilley in sod., 2005; Ramachandran in sod., 2005; Farrand in sod., 2010).

Slika 5: Shematski prikaz stopenj pri tvorbi por CDC-jev (Tilley in sod., 2005: 254) (A) Monomeri se vežejo na membrano z domeno D4. (B) Prikazana je pred-pora s tremi monomeri. (C) Prikazani so trije monomeri, ki tvorijo poro. Posamezne domene so obarvane: modro (domena D1), zeleno (domena D2), rdeče (domena D3) in rumeno (domena D4). Oranžne elipse v domeni D3 označujejo TMH vijačnice, ki se v procesu tvorbe por razvijejo v β-transmembranske lasnice.

2.3 LISTERIA MONOCYTOGENES IN LISTERIOZA

Listeria monocytogenes, odkrita leta 1926 (Murray in sod., 1926), je Gram-pozitivna bakterija, oportunistični patogen za živalske gostitelje, a lahko živi tudi prosto v okolju brez gostiteljev. Prenaša se preko hrane in je glavna povzročiteljica bolezni listerioze, ki je lahko smrtna predvsem za osebe s slabim imunskim sistemom, pri nosečnicah pa lahko privede do rojstva mrtvega otroka ali usodne neonatalne okužbe. *L. monocytogenes* uporabljajo imunologi za študije celično posredovanega imunskega odziva, čeprav protitelesa nimajo nikakršne vloge pri okrevanju (Mackaness, 1962; Lane in Unanue, 1972). Poleg tega je *Listeria* postala orodje za proti-tumorske terapije, cepiva za zdravljenje raka pa so že v fazi pred-kliničnih testiranj. Ta cepiva izrabljajo ravno LLO kot fuzijski partner za tumorski antigen, saj LLO izredno dobro predstavlja antigen in aktivira imunski sistem (Rothman in Paterson, 2013). Netipične imunološke lastnosti Listerije

najverjetneje izvirajo iz njene sposobnosti, da se lahko razmnožuje znotraj celice. Ta fakultativna znotrajcelična bakterija lahko vstopi in se razmnožuje v citosolu večine človeških celic ter se razširi v sosednje celice, pri čemer uporablja številne virulentne faktorje, ki napadejo celične komponente in na ta način vplivajo na mnoge celične funkcije gostitelja. Ko bakterija preide črevesno bariero, se preko limfe in krvi razširi do jeter, kjer se razmnožuje znotraj hepatocitov, ter do vranice. Nato se lahko razširi do možganov in placente (Slika 6) (Cossart in Toledo-Arana, 2008; Cossart in Lebreton, 2014).

Slika 6: Okužba z bakterijo Listeria monocytogenes (Cossart in Lebreton, 2014: 2438) (A) Potek okužbe in vivo. Po zaužitju okužene hrane (1) se bakterije naselijo v prebavnem traku. Bakterije lahko preidejo črevesno bariero (2) in potem, ko pridejo do mezenteričnh limfnih vozlov, se jim odpre pot do sistemskega obtoka (3). Prvi tarči okužbe so jetra in vranica (4), ki očitno nudijo okolje za preživetje in razmnoževanje bakterije, če okužba ni odstranjena z imunskim obrambnim mehanizmom. Sprostitev bakterije v krvni obtok lahko povzroči septikemijo. V nekaterih primerih L. monocytogenes preide krvnomožgansko bariero in se razširi v možgane (5), kar povzroči meningitis ali encefalitis. Pri nosečnicah lahko bakterije preidejo v posteljico (6), kar vodi do splava ali neonatalnih infekcij. (B) Znotrajcelični življenjski cikel Listerie monocytogenes. (1) Listeria vstopi v gostitelja preko "mehanizma zadrge", pri čemer interagira z internalinom InIA in InIB z njunima receptorjema E-kadherinom in Met na površini gostiteljske celice. (2) Z izločanjem efektorjev, LLO in fofatidilinozitid-fosfolipaze C (PI-PLC) odpre endocitotsko vakuolo. (3) Bakterija se v citosolu lahko razmnožuje, pri čemer izrablja vire citosola v svojo korist. Protein na površini bakterije ActA spodbudi polimerizacijo celičnega aktina in s tem nastajanje Arp2/3 kompleksa. Na ta način nastanejo aktinski repi, ki omogočajo znotrajcelično mobilnost bakterije (4) in razširjanje bakterije v sosednje celice (5). (6) Bakterija je po razširitvi v sosednjo celico ujeta v dvojni vakuoli, ki jo ponovno odpreta LLO in PC-PLC.

Kako Listeria vstopi v celice in se širi med njimi, so natančno raziskali v številnih študijah (Cossart in sod., 2003; Cossart in Sansonetti, 2004; Pizarro-Cerdá in Cossart, 2006). V okuženih tkivih je *Listeria* večinoma znotrajcelična. Bakterija v nefagocitično celico vstopi tako, da se približa membrani gostiteljske celice, ki z membrano objame bakterijo. Ta mehanizem se imenuje "mehanizem zadrge", saj gre za postopne interakcije površinskih ligandov bakterije z odgovarjajočimi celičnimi receptorji gostitelja (Slika 6). Po vstopu v celice, so bakterije ujete v vakuoli, v kateri LLO naredi pore, vakuola lizira in bakterije ujeto 30 min. Ko so enkrat v citosolu, se razmnožujejo kot v bogatem

mediju. Osnovna strategija bakterij v citosolu gostiteljskih celic je, da živijo in se razmnožujejo znotraj njih, kolikor dolgo je mogoče. Zato ne smejo porabiti vseh osnovnih hranil za delovanje gostiteljske celice, saj bo sicer celica kmalu sestradana do smrti in bakterija bo izgubila varno okolje. Znotraj citosola bakterije sprožijo rekrutiranje in polimerizacijo aktina, s čimer se tvori mreža razvejanih filamentov. Polimerizacija na enem koncu molekule tvori energijo, da se bakterija lahko premika po citoplazmi s hitrostjo okoli 10 µm na minuto. Ko se bakterija premakne do plazemske membrane, porine membrano, da se tvori izboklina, s katero lahko naprej vdira v sosednje celice. Pri tem se tvori vakuola z dvema membranama, iz katere lahko bakterije ponovno uidejo in se naprej razmnožujejo v novo okuženi celici. S takšnim direktnim širjenjem iz celice v celico se bakterije lahko razširjajo v različna tkiva, pri čemer so obvarovane pred obrambnimi mehanizmi gostitelja. Glavni bakterijski geni in faktorji za uspešno širitev bakterij so bili večinoma odkriti z genetskimi analizami (Hamon in sod., 2007). Ti ključni faktorji so internalin InlA in InlB za vstop bakterije v gostiteljsko celico ter toksin, ki tvori pore, LLO za pobeg iz endocitotske vakuole. V nekaterih celicah delovanje LLO za pobeg iz vakuole ni dovolj, zato tam deluje še PI-PLC, ki ga kodira gen plcA. Gibanje s pomočjo aktina omogoča bakterijski površinski protein ActA. Za ponovni pobeg iz vakuole sosednje gostiteljeve celice sta potrebna LLO in PI-PLC (Slika 6) (Joseph in Goebel, 2007; Cossart in Toledo-Arana, 2008).

2.4 LISTERIOLIZIN O

2.4.1 Zgradba LLO

LLO je enoverižni protein iz 529 aminokislin in molekulsko maso 58,6 kDa (Slika 7). Kodira ga gen *hly*. Prvih 25 aminokislin na N-terminalnem koncu predstavlja signalno zaporedje. Zrel protein, ki ga bakterija izloči, je tako sestavljen iz 504 aminokislin in ima maso 55,8 kDa (Mengaud in sod., 1988). Na splošno je zgradba LLO podobna zgradbam ostalih CDC-jev (poglavje 2.2.1.2). Sestavljen je iz štirih domen, poimenovanih D1 do D4 (Slika 8) (Köster in sod., 2014).

	D1				
60	50	40	30	20	10
T PIEKKHADE	PPASPPASPK	NKENSISS <mark>MA</mark>	QTEA <mark>KDASAF</mark>	LILVSLPIAQ	MKKIMLVFIT
120 NNADIQVVNA	110 VEKKKKSINQ	100 GYKDGNEYIV	90 DAVTNVPPRK	80 NKNNVLVYHG	70 IDKYIQGLDY
180 KNATKSNVNN	170 MTNQDNKIVV 3	160 SLTLSIDLPG D	150 QPDVLPVKRD	140 VKANSELVEN	130 ISSLTYPGAL
240 SLNVNFGAIS	230 FGTAFKAVNN	220 Ayse <mark>sqliak</mark>	210 SAKIDYDDEM	200 EKYAQAYPNV	190 AVNTLVERWN
300 AYISSVAYGR	290 ALGVNAENPP	280 GKAVTKEQLQ	270 NEPTRPSRFF	260 FKQIYYNVNV	250 <mark>EG</mark> KMQEEVIS
360 SAKDEVQIID	350 SSFKAVIYGG	340 DVELTNIIKN	330 AAVSGKSVSG	320 HS <mark>TKVKAAF</mark> D	310 QVYLKLSTNS
420 SKAYTDGKIN	A 410 KNNSE Y IETT	400 FLKDNELAVI	390 PGVPIAYTTN	380 KKGATFNRET 4	370 GNLGDLRDIL
480 PGNARNINVY	470 LAHFTSSIYL	460 KNWSENNKSK	450 DPEGNEIVQH	440 FNISWDEVNY	430 IDHSGGYVAQ
	SNKVDNPIE	520 IWGTTLYPKY	510 LPLVKNRNIS	500 <mark>WWR</mark> TVIDDRN	490 AK <mark>ECTGLAWE</mark>
				eptid ica edje id D1 D2	Legenda: Signalni pe PPII vijači PEST zapore THM1 THM2 Undekapept: Domena 1 - Domena 2 - Domena 3 -

Slika 7: Aminokislinsko zaporedje LLO, kjer so označeni pomembni elementi v zgradbi (PDB-ID: 4CDB) (prirejeno po Köster in sod., 2014)

Domena 4 - D4-

Mutacija na mestu 406 iz Y v A

Zaporedje za signalni peptid je obarvano zeleno, PPII vijačnica vijolično, znotraj katere je s krepkimi črkami označeno PEST zaporedje, THM1 je obarvan rumeno, THM2 sivo in undekapeptid modro. Barvne linije pripadajo domenam na pripadajočim zaporedjem: domena D1 – rdeča (aminokisline: 39-69, 113-203, 253-300, 373-398), domena D2 – rumena (aminokisline: 70-112, 399-415), domena D3 – zelena (aminokisline: 204-252, 301-372), domena D4 – modra (aminokisline: 416-526). S krepkimi rdečimi črkami je označeno mesto 406, kjer je mutacija iz tirozina v alanin.

D1 sestavlja α/β zvitje, in sicer pet β -trakov sestavlja β -ploščo, ki jo obdaja šest α -vijačnic. D2 vsebuje štiri β -trakove in tvori iz treh β -trakov antiparalelno β -ploščo, ki povezuje D1 z D4. D3 sestavlja antiparalelna β -plošča iz petih β -trakov, ki jo obdaja šest α -vijačnic, v obliki $\alpha/\beta/\alpha$ zvitja. D4 ima obliko β -sendviča iz štirih β -trakov. Medtem ko so D1, D2 in D3 med seboj povezane, je D4 neodvisno zvita in se povezuje z D2 preko glicina (G417). Undekapeptid ₄₈₃ECTGLAWEWWR₄₉₃, ki je visoko ohranjen med CDC-ji, in zanke, vključene v prepoznavanje receptorjev ter začetne vezave na membrano, se nahajajo na strani D4, ki je obrnjena stran od D2. Signalni peptid iz 24 aminokislin (1–24) se odcepi med izločanjem in tako ni prisoten v zgradbi zrele molekule. Zaporedje PEST (39–51), podaljšek na N-terminalnem koncu, interagira s površino β -plošče v D1 (Köster in sod., 2014).

Slika 8: Kristalna zgradba LLO (PDB-ID: 4CDB) (Köster in sod., 2014: 3) Posamezne domene so prikazane v različnih barvah: PPII vijačnica je obarvana vijolično, D1 rdeče, D2 rumeno, D3 zeleno in D4 modro. Snopi vijačnic, ki se vstavijo v membrano (TMH1 in TMH2) v D3, so sinje barve. Undekapeptid bogat s triptofani na koncu domene D4 je obarvan svetlo zeleno.

Zaporedje PEST, bogato s prolinom (P), glutaminsko kislino (E), serinom (S) in treoninom (T), je značilno za proteine s kratkim znotrajceličnim obstojem (Rogers in sod., 1986). To zaporedje naj bi bilo tarča evkariontskih proteinov za fosforilacijo ali degradacijo s proteosomom. LLO je izjema med CDC-ji, saj na N-terminalnem koncu vsebuje zaporedje PEST (aminokisline 39–51 v domeni D1), ki je pomembno za ohranjanje bakterijske virulence in pobeg iz fagosoma ter omejuje LLO, da lahko tvori pore le v vakuoli in ne v citosolu (Decatur in Portnoy, 2000; Lety in sod., 2001; Lety in sod., 2002). V primeru LLO zaporedje PEST najverjetneje ni tarča proteosomske degradacije, temveč regulira produkcijo LLO v citosolu (Schnupf in sod., 2006b). *L. monocytogenes* uravnava produkcijo LLO z negativno regulacijo translacije proteina LLO med rastjo v citosolu. Za uravnavanje uporablja kontrolne elemente znotraj zaporedja PEST na nivoju mRNA (Schnupf in sod., 2006a). Dodatni mehanizem za uravnavanje produkcije LLO, tvorbe por

in posledično zaščita znotrajcelične niše *L. monocytogenes*, kadar se LLO producira v preveliki meri, je ubikitin-odvisna degradacija na N-koncu (Schnupf in sod., 2007).

Zaporedje, ki se nahaja pred zaporedjem PEST, aminokisline 25–38, zaradi šestih prolinov tvori štiri zavoje levosučne vijačnice brez znotraj-molekularnih vodikovih vezi. Takšno ureditev imenujemo tudi poliprolinska vijačnica tipa II (PPII). Vijačnica PPII pri LLO se nahaja nad domeno D1 in je usmerjena proti sosednji simetrično sorodni molekuli v kristalni zgradbi LLO (Slika 9). Ena izmed možnih vlog vijačnice PPII je regulacija pri tvorbi por. Vijačnica PPII je namreč fleksibilna in pri interakcijah (z npr. citosolnimi proteini gostiteljske celice) lahko pride do neoptimalne ukrivljenosti ter se tako prepreči tvorba oligomerov, potrebnih za tvorbo por (Köster in sod., 2014).

Slika 9: Model oligomerizacije LLO, tvorba obroča in vloga vijačnice PPII (Köster in sod., 2014: 11) (a) Vstavitev N-terminalne vijačnice PPII med monomere preprečuje tvorbo oligomerov z optimalno ukrivljenostjo za vstavitev v membrano. Interakcije s citosolnimi proteini bi lahko vplivale na lokacijo vijačnice PPII na površini domene D1. (b) Prestavitev vijačnice PPII (vijolična puščica) pripomore k pravilni ukrivljenosti oligomera (zelene puščice) in posledično tvorbo pore (sive puščice). (c) Model enega obroča, sestavljenega iz 36 monomerov LLO, ki so zasukani za 10° glede na sosednje molekule.

Tvorba por z LLO 2.4.2

Zaradi visoke podobnosti v zgradbi si LLO z drugimi člani CDC družine deli tudi osnovni mehanizem tvorbe por, opisan v poglavju 2.2.2. Mehanizem tvorbe por po vezavi na membrano sicer še vedno ni popolnoma znan. Predlagana sta dva modela. Po prvem modelu se monomeri vežejo, oligomerizirajo in tvorijo pred-porni obroč, ki nato preide skozi membrano in tako tvori poro. Po tem modelu naj bi bile pore vedno enake velikosti. Po drugem modelu se pora lahko tvori tudi v primeru, ko obroč z monomeri še ni popoln, pri tem nastanejo pore v obliki loka, kjer en del pore tvori protein LLO, drug del pa lipidi iz membrane. Pri tem modelu je velikost por lahko različna, tvorijo se lahko tudi majhni kanali. Velikost pore z dodajanjem novih monomerov lahko postopno narašča (Palmer in sod., 1998). Drugi model se zdi bolj kontroverzen, vendar je čedalje več dokazov, da pore v obliki loka obstajajo in s tem obstajajo tudi manjše pore. Shaughnessy in sod. (2006) so pokazali, da LLO znotraj vakuole tvori "mikropinosome", ki prepuščajo le ione in majhne molekule ter ostanejo tako majhni nekaj minut preden postanejo prepustni za večje molekule. Hamon in Cossart (2011) sta pokazala, da pred-inkubacija LLO s holesterolom le delno blokira tvorbo por, in na ta način tvori pore, ki so prepustne za ione in ne makromolekule. Na ta način lahko prehajajo različni ioni, ki sprožajo različne odzive pri infekciji (Hamon in Cossart, 2011).

2.4.3 Vloga LLO

Poleg vloge LLO pri tvorjenju por v membrani študije nakazujejo, da ima LLO vlogo tudi pri ostalih celičnih funkcijah, ki so lahko ključne med infekcijo. Ali takšno aktivacijo neposredno povzroči LLO ali pa je to posredni odgovor degradacije vakuole, še ni povsem znano. Znotrajcelična vloga LLO naj bi bila nadzorovanje avtofagije po pobegu iz vakuole. Avtofagija je znotrajcelični katabolni proces, katerega tarča degradacije je celični ali tuji material ujet v vakuole z dvojno membrano, ki se zlijejo z lizosomi. Avtofagija predstavlja tudi sistem za ujetje in degradacijo nekaterih znotrajceličnih bakterij. Čeprav naj bi listeria razvila mehanizme, ki ji omogočajo, da se izgone avtofagiji (izražanje ActA in InlK na površini), je listeria vseeno lahko tarča avtofagije v nekaterih celičnih tipih. Indukcija avtofagije naj bi bila pogojena z LLO. Molekularni mehanizem še ni pojasnjen, predvideva pa se, da avtofagni sistem prepozna membrane fagosoma, ki jih je poškodoval LLO (Birmingham in sod., 2007; Py in sod., 2007; Yano in sod., 2009; Yoshikawa in sod., 2009; Meyer-Morse in sod., 2010; Dortet in sod., 2011). Poliubikvitirani proteini in avtofagni markerji se po uničenju fagosoma prenesejo na L. monocytogenes ali na ostanke vakuolne membrane (Ligeon in sod., 2011; Thurston in sod., 2012). Potrebne pa so nadaljnje študije, da bi določili, ali LLO odvisna indukcija avtofagije ali premik avtofagnega sistema na bakterijo oziroma ostanke membran omejuje razmnoževanje bakterije (Hamon in sod., 2012). Poleg tega naj bi imel LLO vlogo pri regulaciji aktivnosti NOX2 NADPH oksidaze. Reaktivne kisikove zvrsti (ROS), ki ji proizvaja NOX2 NADPH oksidaza v makrofagih, igrajo ključno vlogo pri omejevanju razmnoževanja bakterij.

Nedavno so pokazali, da je LLO sposoben zavirati ROS, ki jih proizvajajo makrofagi kot odgovor na infekcijo *z L. monocytogenes* (Lam in sod., 2012). Mehanizem tega še ni jasen, predpostavlja pa se, da LLO inhibira lokalizacijo oksidaze v fagosomu, a pri tem ne poruši globalne produkcije ROS (Hamon in sod., 2012).

LLO lahko izloča bakterija tudi zunaj gostiteljske celice in ima pomembne vloge zunaj gostiteljske celice. Tako ima LLO vloge pri indukciji vstopa bakterije v gostiteljsko celico, saj pore, ki jih tvori LLO na membrani gostitelja, sprožijo vstop kalcija (Ca^{2+}), ki prispeva k učinkoviti invaziji bakterije v gostiteljsko celico (Dramsi in Cossart, 2003). Vadia in sod. (2011) so to potrdili in pokazali, da je očiščen LLO nujen za sprožitev internalizacije, pri čemer se sproži nastajanje membranskih podaljškov, ki lahko ujamejo bakterije. LLO ima tudi vlogo pri indukciji avtofagije zunaj celice (Meyer-Morse in sod., 2010). Tudi nekateri drugi toksini, ki tvorijo pore, lahko inducirajo avtofagijo zunaj celice, ki je pogojena z aktivacijo AMP-aktivirane kinaze in proteinskega kinaznega receptorja (Kloft in sod., 2010). Poleg tega lahko LLO vpliva na SUMO-lacijski sistem gostitelja. SUMO-lijacija je reverzibilna posttranslacijska modifikacija, pri kateri se kovalentno veže SUMO (angl. "Small Ubiquitin-Like Modifier") protein na tarčni protein. SUMO-lijacija je ključna posttranslacijska modifikacija, saj je vključena v številne celične procese, kot je regulacija transkripcije, ohranjanje integritete genoma, znotrajcelični transport ali odzivi na stres (Gareau in Lima, 2011). LLO lahko inhibira SUMO-lacijski sistem, saj razgradi humani E2 SUMO encim, poleg tega pa lahko sproži degradacijo nekaterih SUMO-liranih proteinov. LLO tako s spremembo SUMO-liranih proteinov gostitelja omogoča razmnoževanje in razširjanje bakterije znotraj gostitelja (Ribet in sod., 2013). LLO pa igra tudi pomembno vlogo pri aktivaciji številnih odzivov imunskega sistema, ko gostiteljev sistem v citosolu zazna bakterijo, katera se zaradi aktivnosti LLO sprosti iz vakuole v citosol. Tudi sama molekula LLO je tarča številnih imunskih odzivov. LLO namreč predstavlja enega glavnih epitov CD4 in CD8 T-celic po okužbi z listerio. LLO sproži izstop K^+ ionov iz celice, kar vodi do aktivacije inflamasoma in številnih nadaljnjih efektov na celico. Poleg aktivacije imunskega odziva in sprožitve celične smrti pri limfocitih lahko LLO tudi utiša prirojeni imunski sistem gostitelja, pri čemer inducira neodzivnost CD4⁺ T-limfocitov gostitelja. Dodatno zunajcelično vlogo ima LLO pri fragmentaciji mitohondrijev, do katere pride zaradi vstopa Ca²⁺ preko plazemske membrane v celice gostitelja, ki ga povzroči delovanje LLO. LLO igra pomembno vlogo pri modifikacijah histonov. Histoni so pri evkariontih esencialni za tvorbo kromatina, saj prispevajo k pakiranju DNA v jedru in pri tem ohranjajo pravilne lastnosti DNA pri podvojevanju, transkripciji, itd. Izločen LLO pred vstopom bakterije v gostitelja ustvari pore, ki so propustne za ione, pri čemer pride do transporta kalija iz citoplazme gostitelja. To predstavlja signal, ki vodi do defosforilacije histona H3, s tem pa se spremeni transkripcijski profil številnih genov, pri čemer so nekateri geni imunskega sistema utišani (Slika 10) (Hamon in sod., 2012).

Slika 10: Odgovori gostitelja na zunajcelični LLO (Hamon in sod., 2012: 364) Vsi efekti, prikazani na sliki, nastanejo zaradi tvorbe pore LLO. Tok ionov skozi poro naj bi imel efekt le pri indukciji specifičnih modifikacijah histonov, fragmentaciji mitohondrijev in aktivaciji inflamasoma. Fragmentacijo mitohondrijev sproži vstop kalcija, ne pa tudi izstop kalija. Ravno obratno pa izstop kalija, ne pa tudi vstop kalcija, sproži signale, ki vodijo do modifikacije histonov in aktivacijo inflamasoma. Okrajšave: AMPK – AMP-aktivirana proteinska kinaza, PKR – receptor proteinske kinaze, SUMO – angl. "small ubiquitin-like modifier".

2.4.4 pH odvisnost LLO

LLO je med CDC-ji poseben v tem, da je njegova aktivnost odvisna od pH, poleg tega pa je njegova stabilnost regulirana s temperaturo. Vpliv pH na aktivnost proteina so prvič opisali Geoffroy in sod. (1987). LLO je izgubil hemolitično aktivnost na ovčjih rdečih krvnih celicah pri pH vrednosti nad 7. Citolitična aktivnost je bila maksimalna pri pH vrednosti 5,5, ki je tudi pH vrednost znotraj fagolizosoma. Najbolj optimalno okolje za aktivnost LLO je bilo v območju pH vrednosti od 4,9 do 6,7 (Beauregard in sod., 1997). LLO je bil 10-krat bolj aktiven v kislem pH območju, kot pri nevtralnem pH (Glomski in sod., 2002). Glomski in sod. (2003) so z zamenjavo aminokislin LLO s tistimi, ki se razlikujejo pri pH neodvisnem PFO-ju, odkrili, da je levcin na mestu 461 odgovoren za kisel pH optimum LLO-ja. Pri tem pH neodvisnem mutantu (L461T) se je hemolitična aktivnost LLO pri nevtralnem pH povečala za kar 10-krat. Schuerch in sod. (2005) so pokazali, da je pH odvisnost citolitične aktivnosti LLO rezultat pH in temperaturno pogojene denaturacije LLO. LLO je agregiral pri pH vrednosti 7,4 in temperaturah nad 33 °C, medtem ko pri teh pogojih PFO ni agregiral. LLO ni agregiral pri pH vrednosti 7,4 le, dokler je bila temperatura 23 °C. Avtorji so predlagali, da je pH odvisna agregacija LLO

pogojena s kislimi aminokislinami, ki se nahajajo na α -vijačnici v domeni D3. Pri tvorbi por se snopi α-vijačnic v domeni D3 razvijejo in tvorijo dve transmembranski β-lasnici. Prezgodnje razvitje vijačnic v transmembranski β-lasnici se zgodi pri bazičnem pH in temperaturah nad 33 °C, kar vodi do izpostavitve hidrofobnih aminokislin vodnemu okolju. Zanimivo je, da inkubiranje proteina pri nevtralni pH vrednosti in temperaturi 37 °C vodi do agregacije le pri CDC-jih, ki izvirajo iz Listerije, medtem ko ostali predstavniki CDC-jev, kot so perfingolizin O, streptolizin O in pnevmolizin, pri teh pogojih ohranijo hemolitično aktivnost (Nomura in sod., 2007; Schuerch in sod., 2005). Te študije so pokazale, da je citolitična aktivnost LLO pogojena z izgubo delovanja (agregacijo) pri visokih pH vrednostih in ne pH odvisno aktivacijo pri nizkih pH vrednostih. Bavdek in sod. (2012) so z analizo zgradbe in funkcije LLO pokazali, da pH ne vpliva direktno na lastnosti v zgradbi monomernega LLO. Triptofanski spekter in sekundarna zgradba (CD spekter v daljnem-UV območju) sta namreč podobna v kislem in bazičnem pH, pri temperaturah, ki še ne povzročijo agregacije. Pri preučevanju LLO z analitskim ultracentrifugiranjem so ugotovili, da je LLO prisoten v obliki dimerov pri pH 5,5, medtem ko je pri pH 7,5 v obliki monomerov pri 20 °C. Avtorji predlagajo, da dimerna oblika v kislem okolju pri 37 °C ščiti protein pred oligomerizaijo in denaturacijo v fagosomu. Monomerna oblika je veliko bolj dovzetna za denaturacijo pri 37 °C. Rezultati agregacije so pokazali, da je agregacija LLO pri 37 °C hitra, saj se zgodi na skali med sekundami in minutami, ter je ireverzibilna. Pri pogojih, nevtralen pH in 37 °C, ki posnemajo gostiteljski citosol, je LLO v obliki agregata, pri čemer ni zmožen vezave na membrano. tvorbe por in tako ni citolitično aktiven. Ker je agregacija veliko hitrejša od ubikvitinacije in proteosomske degradacije, agregacija verjetno predstavlja glavni mehanizem inaktivacije toksina v citosolu. Pri temperaturah pod 30 °C je bil protein stabilen in ni tvoril agregatov. Ugotovili so tudi, da so agregati bolj v obliki amorfnih zgradb, in ne v urejenih oblikah, ter da se v agregatih nahaja vsaj nekaj β -struktur, kar pa kljub temu nakazuje na prisotnost urejenih oblik (fibril). Pri pH 5,5 je bil aktiven in zmožen vezave na lipide tudi pri predinkubaciji pri višjih temperaturah (37 °C in 42 °C), medtem ko je pri pH 7,5 popolnoma izgubil aktivnost in zmožnost vezave na lipide pri višjih temperaturah. Pri primerjavi aktivnosti pri sobni temperaturi je bil LLO bolj aktiven pri pH 5,5 kot 7,5. Pri tem se kinetika hemolize ni razlikovala, potrebna je bila le višja koncentracija LLO za doseganje podobnih efektov. Iz tega bi lahko sklepali, da gre za vpliv na vezavo na membrano in ne na oligomerizacijo. Poleg tega so avtorji pokazali, da je LLO zmožen tvoriti podobne pore pri obeh pH (5,5 in 7,5) (Bavdek in sod., 2012). Bavdek in sod., (2007) so predhodno z metodo površinske plazmonske resonance pokazali, da je LLO sposoben permeabilizacije modelnih lipidnih membran in celic v kislem, fiziološkem in rahlo bazičnem pH le, kadar je koncentracija holesterola v membranah dovolj visoka. Meja za najbolj optimalno vezavo LLO je na veziklih, ki vsebujejo vsaj 30 %-40 % holesterola. Poleg tega ima pH velik vpliv na vezavo pri določeni koncentraciji holesterola, pri temperaturah, ki ne povzročijo agregacije (25 °C), saj se LLO pri nižjih koncentracijah holesterola (20 %) veže slabše kot pri višjih pH vrednostih. LLO specifično prepozna 3β-hidroksilno skupino holesterola, saj se pri sterolih, ki imajo spremenjeno to skupino, signifikantno zmanjša vezava. Vezava LLO na katerokoli obliko sterola je bila pH odvisna, celo pri pH 8,5, kjer je bila vezava

LLO na membrane šibka. Vsi ti rezultati kažejo, da na sposobnost vezave LLO na membrane močno vpliva pH in ne mehanizem tvorbe por (Bavdek in sod., 2007; Bavdek in sod., 2012).

Na podlagi modela LLO so odkrili tri aminokisline: asparaginska kislina (D208), glutaminska kislina (E247) in asparaginska kislina (D320), ki jih imenujemo tudi kisla triada in verjetno služijo kot pH senzor LLO (Schuerch in sod., 2005). Pri visokem pH v citosolu so te tri aminokisline deprotonirane, kar vodi do odboja med naboji in sproži inaktivacijo LLO zaradi razvitja in agregacije TMH1 in TMH2 v domeni D3. Te tri aminokisline v zgradbi LLO medsebojno delujejo neposredno in preko vezanih Na⁺ ter H₂O. Poleg tega k temu pH senzorju prispevata tudi tirozin (Y206) in lizin (K316). En Na⁺ ion in ena molekula vode posredujeta interakcije D208, E247 in Y206, iz centralne β plošče, z D320 in K316, iz drugega snopa vijačnic (TMH2) (Slika 11a). Poleg tega dodatnih 7 Na⁺ ionov in 18 molekul vode koordinira mrežo ionskih in hidrofilnih interakcij pri prvem snopu vijačnic (TMH1) s sosednjimi domenami D1 in D2 ter centralno β-ploščo (Slika 11b-f). Izračunane pKa vrednosti ioniziranih aminokislin se razlikujejo od pKa vrednosti teh aminokislin v njihovem prostem stanju ter so odvisne od prisotnosti Na⁺ ionov (Köster in sod., 2014). Visoka koncentracija soli (500 mM NaCl) prepreči denaturacijo in agregacijo LLO, medtem ko se LLO obori pri koncentracij soli pod 50 mM. Očitno Na⁺ ioni kompenzirajo za negativni naboj deprotoniranih karboksilnih stranskih skupin in tako pomagajo ohranjati TMH1 in 2 pravilno zvita. To kaže na kompleksno mrežo interakcij, ki regulira aktivnost v fagosomu in citoplazemsko inaktivacijo LLO. Molekulska regulacija pH odvisnosti se zdi veliko bolj kompleksna, kot so sprva mislili, in je lahko pogojena s koncentracijo ionov v mediju, v katerem se nahaja LLO (Schuerch in sod., 2005; Köster in sod., 2014).

Slika 11: Interakcije v zgradbi LLO, ki stabilizirajo oba svežnja vijačnic, ki se vstavita v membrano (TMH1 in TMH2) (Köster in sod., 2014: 6)

Na⁺ ioni so prikazani s sivo obarvano kroglo, H₂O pa z rdeče obarvano kroglo. (a) D208/E247/Y206 iz centralne β-plošče medsebojno delujejo s K316/D320 iz α11 drugega svežnja vijačnic, ki se vstavi v membrano (TMH1). (b) Y406 iz β-plošče v domeni D2 interagira s kislimi aminokislinami D207/E209 centralne β-plošče in z Q216/K220 iz α6. (c) D1 in D2 se povežeta preko α6 in α7 s koordinacijo enega Na⁺ iona in treh molekul H₂O preko N140, N402 in T223. (d) S250/K252 iz β8, Y303 iz β9 in Y348 iz β10 interagirajo z α6 in D1 preko dveh Na⁺ ionov in treh molekul H₂O. (e) Stranske verige E246, K306 in K344 iz centralne β-plošče interagirajo z glavno verigo zanke in tako povežejo α7 z α8. (f) S213/215 in E214 iz α8 ter Y78/D81/S404 iz β-plošče v D2 preko hidrofilnih in ionskih interakcij tvorijo mrežo.
3 MATERIALI IN METODE

3.1 MATERIALI

3.1.1 Kemikalije

Pri delu smo uporabili naslednje kemikalije: Barvilo SimplyBlue_{TM} SafeStain (Life technologies, ZDA), barvilo Sypro® Orange (5000x) (Life technologies, ZDA), CaCl₂ (Fluka, ZDA), DTT (Sigma, ZDA), elektroforezni pufer NuPAGE® MES SDS Running Buffer (Life technologies, ZDA), FD4, FD10, FD20, FD40 (vse Sigma, ZDA), glicerol (Carlo Erba Reagenti, Italija), glukoza (Sigma, ZDA), Hepes (Sigma, ZDA), holesterol (Avanti Polar Lipids, ZDA), imidazol (Sigma, ZDA), izopropanol (Merck, Nemčija), kalijev fosfat (K₂HPO₄ in KH₂PO₄) (Merck, Nemčija), kloroform (Sigma, ZDA), kvasni ekstrakt (BactoTM Yeast Extract) (BD, ZDA), MES (Sigma, ZDA), NaCl (Merck, Nemčija), natrijev acetat (Sigma, ZDA), natrijev fosfat (NaH₂PO₄ x 2H₂O in Na₂HPO₄ x 2H₂O) (Merck, Nemčija), PMSF (Sigma, ZDA), POPC (Avanti Polar Lipids, ZDA), pufer pri NaDS-PAGE NuPAGE® LDS Sample Buffer (4x) (Life technologies, ZDA), r-DHPE (Invitrogen, ZDA), saharoza (Kemika, Hrvaška), standardi znanih molekulsih mas Precision Plus ProteinTM Unstained Standards (Bio-Rad, ZDA), tripton (BactoTM Tryptone) (BD, ZDA), tris Trizma® base (Sigma, ZDA), β – merkaptoetanol (Sigma, ZDA).

3.1.2 Gojišča

Pri delu smo uporabili naslednji gojišči:

- Luria Bertanijevo gojišče (LB): 0,5 % (m/V) kvasnega ekstrakta, 1 % (m/V) triptona, 1 % (m/V) NaCl, agar (15 mg/ml)
- Bogato gojišče (TB): 2,4 % (m/V) kvasnega ekstrakta, 1,2 % (m/V) triptona, 0,4 % (V/V) glicerola

3.1.3 Pufri, raztopine, reagenti

Sestava pufrov, katere smo uporabili za delo, je razvidna iz preglednic 2-14.

Pufer	Sestava
fosfatni pufer	0,17 M KH ₂ PO ₄ , 0,72 M K ₂ HPO ₄ , pH 7
lizni pufer	50 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 250 mM NaCl, 10 % (V/V) glicerol, pH
	6,5
PMSF	raztopljen v izopropanolu do 100 mM založne koncentracije
pufer A	50 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 250 mM NaCl, 5 % (V/V) glicerol, pH
	6,5
pufer B	50 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 300 mM NaCl, 300 mM imidazol, 5 %
	(V/V) glicerol, pH 6,5
pufer za dializo	20 mM Tris, 200 mM NaCl, 5 % (V/V) glicerol, pH 7,0
pufer za nanos II	50 mM Tris, 250 mM NaCl, 5 % (V/V) glicerol, pH 7,0
GF pufer za LLO	20 mM MES, 150 mM NaCl, 5 (V/V) glicerol, 2 mM DTT, pH 5,7
GF pufer za PFO	20 mM Tris, 150 mM NaCl, 5 (V/V) glicerol, 2 mM DTT, pH 7,5

Preglednica 2: Raztopine in pufri za transformacijo, rast in čiščenje proteinov

Preglednica 3: Pufra za merjenje CD

Pufer	Sestava
pufer za CD pH 5,7	20 mM MES, 10 mM NaCl
pufer za CD pH 7,5	20 mM Tris, 10 mM NaCl

Preglednica 4: Pufra za merjenje agregacije proteinov

Pufer	Sestava
pufer za merjenje agregacije pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
pufer za merjenje agregacije pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl

Preglednica 5: Pufra za merjenje triptofanskega spektra

Pufer	Sestava
pufer za triptofanski spekter pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
pufer za triptofanski spekter pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl

Pufer	Sestava
pufer za DSF pH 4,5	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 5,0	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 5,5	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 6,0	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 6,5	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 7,0	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 7,5	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF pH 8,0	20 mM natrijev acetat, 150 mM NaCl
pufer za DSF 0 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 10 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 50 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 100 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 150 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 200 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 300 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5
pufer za DSF 500 mM NaCl	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ pri pH 5,7 in 7,5

Preglednica 6: Pufri za merjenje DSF

Preglednica 7: Pufra za merjenje DLS (dinamično sipanje svetlobe)

Pufer	Sestava
pufer za DLS pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 150 mM NaCl
pufer za DLS pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 150 mM NaCl

Preglednica 8: Pufra za analizo z gelsko kromatografijo

Pufer	Sestava
pufer za gelsko kromatografijo pH 5,7	20 mM MES, 150 mM NaCl, 5 % (V/V)
	glicerol
pufer za gelsko kromatografijo pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 150 mM NaCl,
	5 % (V/V) glicerol

Preglednica 9: Pufri za merjenje hemolitične aktivnosti

Pufer	Sestava
eritrocitni pufer pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
eritrocitni pufer pH 6,0	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
eritrocitni pufer pH 6,5	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
eritrocitni pufer pH 7,0	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
eritrocitni pufer pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
eritrocitni pufer pH 8,0	20 mM Tris, 140 mM NaCl
eritrocitni pufer pH 8,5	20 mM Tris, 140 mM NaCl

Preglednica 10: Pufer za test vezave proteinov na eritrocite

Pufer	Sestava
eritrocitni pufer pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl

Preglednica 11: Pufri za test vezave proteinov na MLV-je

Pufer	Sestava
pufer za MLV pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
pufer za MLV pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 140 mM NaCl
pufer za MLV pH 8,0	20 mM Hepes, 140 mM NaCl

Preglednica 12: Pufra za analizo vezave proteinov na lipidne membrane s površinsko plazmonsko resonanco

Pufer	Sestava
pufer za SPR pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 300 mM NaCl
pufer za SPR pH 7,4	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 300 mM NaCl

Preglednica 13: Pufra za analizo aktivacije proteinov na membrani

Pufer	Sestava
pufer za SPR pH 8,0	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 300 mM NaCl, 1 mM EDTA
pufer za aktivacijo pH 5,7	20 mM NaH ₂ PO ₄ /Na ₂ HPO ₄ , 300 mM NaCl, 1 mM EDTA

Preglednica 14: Pufri za analizo permeabilizacije GUV-ov

Pufer	Sestava
saharozni pufer za GUV-e	295 mM saharoza, 1 mM HEPES, 0,1 mM CaCl ₂ ,
	294 mOsmol, pH 5,6
glukozni pufer za GUV-e	295 mM glukoza, 1 mM HEPES, 0,1 mM CaCl ₂ , 294
	mOsmol, pH 5,5
proteinski pufer za GUV-e	10 mM Hepes, 150 mM NaCl, 0,1 mM CaCl ₂ , 294
	mOsmol, pH 5,6

Do ustreznega volumna smo pufre dopolnili z MQ (Milli-Q, ultra čista voda) v bučkah. Vse raztopine so bile prefiltrirane skozi 0,22 µm filter.

3.1.4 Bakterijski sevi

Za rast proteinov v erlenmajericah in bioreaktorju smo uporabili bakterijski sev:

• Escherichia coli BL21(DE3)pLysS

3.1.5 Plazmidi

Kot vektor za produkcijo rekombinantnih proteinov smo uporabili plazmid:

• pPROEX HTb

3.1.6 Laboratorijska oprema

Pri delu smo uporabljali naslednjo opremo: Avtoklav (Kambič, Slovenija), bioreaktorski sistem 7 L Applikon ADI 1010, ADI 1032 BioController, ADI 1025 BioConsole, ADI 1065 BioBench (Applikon Biotechnology, Nizozemska), centrifuga Avanti J-E Centrifuge (Beckman Coulter, ZDA), centrifuga Eppendorf Centrifuge 5415 R (Eppendorf, Nemčija), centrifuga Rotina 35 R (Hettich, Nemčija), čitalec mikrotitrnih plošč SynergyMX (BioTek, ZDA), dializno črevo Fisherbrand Dialysis Tubing 10.000-12.000 MWCO (Thermo Fisher Scientific, ZDA), ekstrudor LiposoFast (Avestin, Kanada), elektroforezni gel NuPAGE® Novex® Bis-Tris Mini Gel (Life technologies, ZDA), elektroforezni sistem XCell SureLockTM Mini-Cell Electrophoresis System (Life technologies, ZDA), encimski test za določonaje konc. holesterola in fosfolipidov (Wako, ZDA), fluorimeter LS 55 Fluorescence Spectrometer (PerkinElmer, ZDA), funkcijski generator električne napetosti GFG-3015 (GW Instek, Tajska), imerzijski objektiv HCX PL APO x40 z numerično aperturo 1.25 (Leica Microsystems, Nemčija), inkubator (Kambič, Slovenija), kiveta Hellma 104 QS Quarz SUPRASIL®, 10 mm, 1400 µl (Elscolab, Belgija), kiveta Hellma 109 QS Quarz SUPRASIL®, 10 mm, 1500 µl (Elscolab, Belgija), kiveta za merjenje DLS ZEN0040 (Malvern, Velika Britanija), kiveta za snemanje CD-spektra daljnega UV 110 QS (Hellma Analytics, Nemčija), kolona NiNTA Superflow (Qiagen, Nemčija), kolona za gelsko kromatografijo Superdex 200 10/300 GL, 24 ml (GE Healthcare, Velika Britanija), kolona za gelsko kromatografijo Superdex 200 26/60, 330 ml (GE Healthcare, Velika Britanija), koncentrator AmiconUltra MWCO 10.000 (Millipore, ZDA), koncentrator Savant DNA SpeedVac® (Thermo Scientific, ZDA), konfokalni mikroskop Leica TCS SP5 nameščen na invertnem mikroskopu Leica DMI6000 CS (Leica Microsystems, Nemčija), kristalizacijski robot Gryphon (Art Robbins Instruments, ZDA), kromatografski sistem Äkta FPLC (American Biosciences, Velika Britanija), membrana 100 nm Polycarbonate Membrane (Avestin, Kanada), naprava za merjenje DLS Zetasizer NanoZS (Malvern, Velika Britanija), osmometer Semi-Micro Osmometer, K-7400 (Knauer, Nemčija), plošče za gojitev tkivnih kultur 24-well Cell Culture Plate (BD Biosciences, ZDA), plošče za hemolizo Costar 3596 (Corning Incorporated, ZDA), plošče za kristalizacijo INTELLI-PLATE® (Art Robbins Instruments, ZDA), plošče za merjenje fluorescence Corning 3686, 96-well, Half Area, Black (Corning Incorporated, ZDA), program 845x UV-Visible ChemStation (Agilent Technologies, ZDA), program BIAevaluatin v3.2 (GE Healthcare, Velika Britanija), program Leica LAS AF 2.5.1 (Leica Microsystems, Nemčija), program LightCycler® 480 Software (Roche, Nemčija), program Origin 8.1 (OriginLab, ZDA), program Zestasizer v7.03 (Malvern, Velika Britanija), refraktometer Biacore X (GE Healthcare, Velika Britanija), rotavapor R-215, R-134 (Büchi, Švica), RT-PCR naprava LightCycler® 480 System (Roche, Nemčija), senzorski čip L1 (GE Healthcare, Velika Britanija), seti reagentov za kristalizacijo JCSG Core Suite I, JCSG Core Suite II, JCSG Core Suite III, JCSG Core Suite IV, PACT Suite in Cryos Suite (Art Robbins Instruments, ZDA), sonikator Ultrasonic Processor (Cole-Parmer, ZDA), spektrofotometer 8453 UV-Vis (Agilent Technologies, ZDA), spektrofotometer Agilent 8453 UV-Visible Spectrophotometer (Agilent Technologies, ZDA),

spektrofotometer Nanodrop Spectrophotometer ND-1000 (Thermo Scientific, ZDA), spektrometer ChirascanTM CD Spectrometer (Applied Photophysic, Velika Britanija), stereomikroskop Nikon SMZ1500 (Nikon, Japonska), stresalnik (Kambič, Slovenija), ultracentrifuga L7-55 Ultracentrifuge (Beckman, ZDA).

3.2 METODE

3.2.1 Transformacija bakterij, gojenje bakterij v erlenmajericah ter izražanje rekombinantnih proteinov

Za izražanje proteinov LLO in PFO smo uporabili bakterijski ekspresijski sistem *Esherichia coli*, sev BL21(DE3)pLysS. V Laboratoriju za molekularno biologijo in nanobiotehnologijo, Kemijski inštitut, so bili predhodno pripravljeni vektorji, ki vsebujejo zapis za oba rekombinantna proteina. Kot vektor je bil uporabljen plazmid pPROEX HTb s predhodno vstavljenim zapisom za bodisi divji tip LLO bodisi divji tip PFO. Ravno tako sta bila predhodno pripravljena v tem plazmidu tudi mutanta LLO Y406A (tirozin na mestu 406 je zamenjan z alaninom) ter PFO Y381A (tirozin na mestu 381 je zamenjan z alaninom).

Transformacijo plazmidov v bakterijske celice smo izvedli tako, da smo odmrznjenim kompetentnim celicam E. coli BL21(DE3)pLysS dodali 1 µl ustreznega plazmida in inkubirali na ledu 15 min. Nato smo izvedli toplotni šok v vodni kopeli 90 s na 42 °C. Po 3 min ohlajanja na ledu smo transformiranim celicam dodali 600 µl tekočega LB gojišča ter stresali 1 uro na 37 °C pri 150 vrt./min. Zatem smo centrifugirali 3 min pri 1500 g, odlili okoli 500 µl supernatanta, preostalo gojišče in posedene celice smo resuspendirali ter jih razmazali na plošče s trdnim LB gojiščem z ampicilinom in kloramfenikolom. Te plošče smo inkubirali na 37 °C čez noč. Za gojenje večjih količin celic v erlenmajericah smo pripravili ustrezno količino TB gojišča ter fosfatnega pufra (0,17 M KH₂PO₄, 0,72 M K₂HPO₄), ki smo ju avtoklavirali 20 min pri 15 psi. Naslednji dan smo pripravili vcepek, tako da smo v 250 ml erlenmajerici zmešali 45 ml TB gojišča, 5 ml fosfatnega pufra, 100 μl ampicilina (založna konc.: 50 mg/ml), 50 μl kloramfenikola (založna konc.: 34 mg/ml) ter s sterilno plastično zanko prenesli kolonije bakterijskih celic z agarne plošče, ki smo jo inkubirali preko noči. Kulturo smo stresali 2 uri na 37 °C pri 150 vrt./min. Za nadaljnjo rast celic in produkcijo posameznega proteina smo uporabili štiri erlenmajerice z volumnom 3 L, v posamezno smo namešali 900 ml TB gojišča, 100 ml fosfatnega pufra, 2 ml ampicilina, 1 ml kloramfenikola, 4 kapljice protipenilca ter 10 ml tekočega vcepka. Kulturo smo stresali na 37 °C pri 150 vrt./min dokler gostota celic ni dosegla optične gostote 1 (absorbanca pri 600 nm). Nato smo dodali 1 ml IPTG (založna konc.: 0,5 M) induktorja za pričetek izražanja proteina. Kulturo smo gojili na stresalniku 20 ur na 20 °C pri 160 vrt./min. Po 20 urah smo kulturo centrifugirali 10 min pri 5500 vrt./min na 4 °C in nato odstranili supernatant, pelet pa resuspendirali v liznem pufru (50 mM

NaH₂PO₄/Na₂HPO₄, 250 mM NaCl, 10 % (V/V) glicerol, pH 6,5). Tako pripravljene celice smo zamrznili v tekočem dušiku in shranili na -80 °C.

3.2.2 Rast proteinov v bioreaktorju

Proteina LLO WT in LLO Y406A smo poleg rasti v erlenmajericah na stresalnikih pripravili tudi z rastjo v bioreaktorju. Transformacijo in pripravo vcepka smo izvedli na enak način, kot je opisano v poglavju 3.2.1, le da smo tokrat pripravili 300 ml vcepka (3krat 100 ml v posamezni erlenmajerici), saj je bil tudi volumen TB gojišča v bioreaktorju večji, to je 4 L. Pred pričetkom rasti v bioreaktorju smo najprej pripravili bioreaktor za delo. Z mokro in suho sterilizacijo smo sterilizirali vse ventilčke bioreaktoria, ravno tako tudi steklenice s cevkami in filtri, ki se uporabljajo za aseptično črpanje raztopin in kulture v bioreaktor. pH senzor smo umerili s standardnima pufroma s pH 5,0 ter pH 7,0. Pufer s pH 6,0 smo imeli za kontrolo meritve. Umerili smo tudi pO2 senzor. Ob gorilniku smo na bioreaktor namestili sterilne ventilčke, v bioreaktor nalili 4 L TB gojišča ter izvedli tlačni test. Ko je bil tlačni test uspešen, smo izvedli sterilizacijo v bioreaktorju, 50 min, 121 °C. Po končani sterilizaciji smo aseptično odvzeli nekaj gojišča za razmaz po LB ploščah, ki smo jih preko noči inkubirali na 37 °C in tako preverili, če je bila sterilizacija v bioreaktorju uspešna. S pomočjo steklenic s cevkami in filtri ter črpalko, katere smo posamično v laminarju napolnili s 500 ml fosfatnega pufra, 50 ml destilirane vode z 10 ml ampicilina ter 5 ml kloramfenikola ter 250 ml vcepka. Vse raztopine in vcepek iz steklenic smo aseptično prečrpali preko sterilnih ventilčkov v bioreaktor. Pri 37 °C, 600 vrt./min smo kulturo gojili v biorektorju, dokler ni dosegla optične gostote okoli 1. Nato smo ponovno s pomočjo steklenic s cevkami in filtri aseptično prečrpali 5 ml IPTG v bioreaktor. Temperaturo v biorektorju smo znižali na 20 °C in pustili rasti preko noči. Preko računalnika smo spremljali parametre, in ko sta se začela pH in odstotek O₂ močno dvigovati, smo rast ustavili. Dvig pH in O₂ namreč nakazuje, da so celice začele odmirati in tako ne proizvajajo več proteina. Biomaso smo prečrpali iz bioreaktorja in jo centrifugirali 10 min pri 5500 vrt./min na 4 °C. Supernatant smo odstranili pelet, resuspendirali v liznem pufru in tako pripravljene celice zamrznili v tekočem dušiku ter jih shranili na -80 °C.

3.2.3 Izolacija in čiščenje proteinov

Vse proteine LLO WT, LLO Y406A, PFO WT in PFO Y381A smo izolirali in očistili po istem postopku, razen kjer je navedeno drugače.

Celice, shranjene pri -80 °C, smo odtalili čez noč v čaši na ledu. Odtaljenim celicam smo dodali β -merkaptoetanol do končne koncentracije 5 mM, ter inhibitor serinskih proteaz PMSF do končne koncentracije 2 mM. Celice smo nato razbili z ultrazvokom v sonikatorju po programu 2-krat 7 min (1 s trajajočim pulzom in 2 s premorom) z amplitudo 37 %. Medtem smo celice ves čas hranili na ledu. Po končanem soniciranju smo bakterijski lizat uporabili za nadaljnjo izolacijo, ker se je v njem nahajal topni LLO oziroma PFO.

prefiltrirali skozi filter velikosti 0,45 µm, nato pa še skozi 0,22 µm. Supernatant smo

Za izolacijo želenih proteinov (LLO in PFO) smo najprej uporabili nikelj afinitetno kromatografijo, katere princip ločevanja temelji na specifični afiniteti proteinov do Ni²⁺ ionov, vezanih na nosilec v koloni. N-terminalni del gena za protein je bil pripravljen tako, da je dodatno vseboval zapis za šest zaporednih histidinov (His-repek), ki služijo za vezavo na ligand (Ni²⁺-nitrilotriocetna kislina – Ni-NTA). Poleg tega je bilo proteinu med kloniranjem dodano tudi cepitveno mesto za TEV proteazo, to je zaporedje aminokislin ENLYFQG, ki jih prepozna TEV proteaza in tako specifično odreže His-repek s proteina. Za čiščenje s pomočjo kolone Ni-NTA smo uporabili kromatografski sistem FPLC. Črpalka A je črpala pufer A (brez imidazola, 50 mM NaH₂PO₄/Na₂HPO₄, 250 mM NaCl, 5 % (V/V) glicerol, pH 6.5), črpalka B pa je črpala pufer B (50 mM NaH₂PO₄/Na₂HPO₄, 300 mM NaCl, 300 mM imidazol, 5 % (V/V) glicerol, pH 6,5). Ni-NTA kolono, volumna 10 ml, smo naprej sprali s 50 ml MQ vode, nato pa še s 50 ml pufra, kjer je bil uporabljen 3,3 % delež (10 mM imidazol) pufra B. Po končanem spiranju smo v zanko za nanos vzorca injicirali prefiltriran vzorec in ga s pomočjo te zanke nanesli na kolono s pretokom 1 ml/min in pufrom, ki je vseboval 10 mM imidazol (3,3 % delež pufra B). Po končanem nanosu vzorca smo pretok povečali na 2 ml/min. V tej fazi se veže protein na ligand na koloni, sperejo pa se vse ostale nečistoče. Ko je absorbanca padla proti ničli, smo zamenjali pufer, da je vseboval 30 mM imidazol (10 % delež pufra B) in so se tako izločile še nekatere nečistoče, ki so bile šibkeje oziroma nespecifično vezane na kolono. Ko je absorbanca ponovno padla proti ničli, smo zamenjali pufer, da je vseboval 300 mM imidazol (100 % delež pufra B). Na tej stopnji se je spral rekombinantni protein, saj smo z visoko koncentracijo imidazola povzročili, da je imidazol tekmoval za vezavna mesta na koloni s His-repki našega proteina in tako izločil protein s kolone. Pri vsaki stopnji spiranja kolone smo zbirali frakcije v čaše na ledu: frakcije nanosa (10 mM imidazol), vmesnega spiranja (30 mM imidazol) in končnega spiranja (300 mM imidazol), v katerih smo preverili prisotnost in čistost proteinov z NaDS-PAGE elektroforezo.

Frakciji, v kateri se je nahajal želeni protein, smo dodali TEV proteazo (v 40 ml raztopine smo dodali približno 3 ml TEV proteaze s koncentracijo 0,5 – 1 mg/ml, ki smo jo pripravili v Laboratoriju za molekularno biologijo in nanobiotehnologijo). To raztopino smo nato prenesli v dializno črevo s porami velikosti 10–12 kDa. Pripravili smo 3 L dializnega pufra (20 mM Tris, 200 mM NaCl, 5 % (V/V) glicerol, pH 7,0), vanj potopili dializno črevo, ki je v notranjosti vsebovalo frakcijo z našim proteinom in TEV proteazo, in pustili ob rahlem mešanju preko noči v hladni sobi. Na tej stopnji je TEV proteaza cepila His-repek s proteina, odstranili pa smo tudi imidazol v vzorcu.

Naslednji dan smo z NaDS-PAGE elektroforezo preverili, ali je TEV proteaza cepila protein. Nato smo NiNTA kolono sprali s 50 ml MQ vode ter 50 ml pufra za nanos II (50 mM Tris, 250 mM NaCl, 5 % (V/V) glicerol, pH 7,0). Raztopino iz dializnega črevesa smo

nanesli v zanko in iz zanke s pufrom za nanos II ter pretokom 1 ml/min nanašali vzorec na kolono. Po končanem nanašanju vzorca iz zanke smo pretok povečali na 2 ml/min. V tej fazi se je spral naš protein, saj protein brez His-repka pri ponovnem nanosu na NiNTA kolono pride iz kolone v nevezani frakciji. Vezala pa se je TEV proteaza, ki tudi nosi zapis za His-repek, ter od proteina odrezani His-repki ter potencialno preostanek proteina, kjer do cepitve ni prišlo. Ko je po spiranju kolone absorbanca padla proti nič, smo nato sprali s pufrom B in pri tem so se izločili še ostali proteini oziroma nečistoče. Prvi nevezani frakciji smo spektofotometrično pomerili absorbanco pri 280 nm na NanoDropu, ki nam je določil koncentracijo želenega proteina iz vpisanega teoretičnega ekstinkcijskega koeficienta za posamezen protein, LLO $\varepsilon^{1\%} = 13,43$ in PFO $\varepsilon^{1\%} = 13,71$, katere smo določili iz aminokislinskega zaporedja s pomočjo orodja ProtParam na bioinformacijskem portalu ExPASy.

Protein, očiščen z nikelj afinitetno kromatografijo, smo nato dodatno očistili z gelsko kromatografijo (metoda opisana v 3.2.10.1) in hkrati zamenjali v želeni pufer za shranjevanje proteina. Ta tip kromatografije temelji na ločevanju molekul glede na njihovo velikost. Velike molekule potujejo po koloni hitreje in se tako prve izločijo iz kolone, majhne molekule pa se ujamejo v pore v gelu v koloni in tako potujejo počasneje. Pred nanosom vzorca na kolono smo protein koncentrirali do ustrezne koncentracije in volumna za nanos na kolono. Koncentrirali smo s centrifugiranjem pri 4000 g in 4 °C v koncentratorjih AmiconUltra s porami velikosti 10 kDa. Gelsko kromatografijo smo izvedli na sistemu FPLC s kolono Superdex 200 26/60, z volumnom 330 ml. Pri čiščenju LLO WT smo uporabili tudi kolono Superdex 200 16/60, z volumnom 120 ml, da bi primerjali resolucije ločevanja obeh kolon. Kolone smo najprej sprali s tremi volumni kolone MQ vode, zatem pa še s tremi volumni kolone GF pufra (za LLO: 20 mM MES, 150 mM NaCl, 5 % (V/V) glicerol, 2 mM DTT, pH 5,7; za PFO: 20 mM Tris, 150 mM NaCl, 5 % (V/V) glicerol, 2 mM DTT, pH 7,5). GF pufra za ločevanje LLO in PFO sta bila različna zaradi različnih izoelektričnih točk proteinov. Vzorec smo nanesli preko zanke na kolono s pretokom 3 ml/min (pri 330 ml koloni) oziroma 1,1 ml/min (pri 120 ml koloni). Celoten čas ločevanja je bil pretok nastavljen na 3 ml/min oziroma 1,1 ml/min z GF pufrom. Pri 330 ml koloni smo avtomatsko zbirali frakcije po 3 ml, pri 120 ml koloni pa po 1,1 ml. Z NaDS-PAGE elektroforezo smo preverili, v katerih frakcijah se nahajajo posamezni proteini in kako čisti so. Frakcije, v katerih se je nahajal dovolj čist želeni protein, smo združili in ponovno koncentrirali s centrifugiranjem v koncentratorjih AmiconUltra s porami velikosti 10 kDa, do želene koncentracije, kjer je bil protein še stabilen in se ni obarjal (okoli 10 mg/ml). Protein smo nato alikvotirali in alikvote shranili na -80 °C.

3.2.4 NaDS-PAGE

Polikrilamidna gelska elektroforeza z natrijevim dodecilsulfatom (NaDS-PAGE) je ponovljiva in hitra metoda za kvantificiranje, primerjavo in karakterizacijo proteinov. Ločevanje proteinov poteka na osnovi njihovih molekulskih mas. Natrijev dodecilsulfat (NaDS), anionski detergent, se veže na hidrofobne dele proteina, kar poruši njegovo pravilno zvitje in hkrati povzroči, da se v raztopini nahaja v stabilnem stanju prekrit z negativnim nabojem. Zaradi negativnega naboja vsi proteini potujejo proti anodi in ločevanje poteka le na osnovi velikosti. Hitrost potovanja proteinov je obratno sorazmerna z njihovo velikostjo (Bollag in sod., 1996).

Pri naših poskusih smo proteinske vzorce obtežili in obarvali tako, da smo jim dodali nanašalni pufer NuPAGE® LDS Sample Buffer (4x) (Life technologies, ZDA). Proteinske vzorce smo ustrezno razredčili z MQ, nato pa dodali NuPAGE® LDS Sample Buffer (4x) v razmerju razdredčen proteinski vzorec : NuPAGE® LDS Sample Buffer (4x) = 3 : 1. Nato smo vse skupaj segrevali (denaturirali) v termobloku 5 min na 95 °C (pri testih vezave na membrane in vzorcih, ki so vsebovali le proteine) oziroma 10 min na 100 °C (pri vzorcih pri postopku izolacije, ki so vsebovali tudi celice). Po segrevanju smo vzorce centrifugirali v namizni centrifugi 10 s pri 13200 vrt./min in jih nato poleg standardov znanih molekulskih mas Precision Plus ProteinTM Unstained Standards (Biorad, ZDA) nanesli v žepke poliakrilamidnega gela NuPAGE® Novex® Bis-Tris Mini Gel (Life technologies, ZDA) s 4-12 % zamreženostjo gela. Gel je bil vpet v elektroforezni sistem XCell SureLockTM Mini-Cell Electrophoresis System (Life technologies, ZDA). Elektroforeza je potekala 40 min pri konstantni napetosti 200 V in začetnem toku 125 mA v 5 % raztopini elektroforeznega pufra NuPAGE® MES SDS Running Buffer (Life technologies, ZDA). Po končani elektroforezi smo gele 3-krat po 5 min spirali v MQ, nato pa jih barvali 30 min v barvilu SimplyBlueTM SafeStain (Life technologies, ZDA). Zatem smo jih ponovno spirali v MQ do želenega kontrasta proteinskih lis za slikanje gelov.

3.2.5 Cirkularni dikroizem

3.2.5.1 Cirkularni dikroizem

Cirkularni dikroizem (CD) je metoda za preučevanje sekundarne zgradbe proteinov v raztopini. Tehnika temelji na osnovi, da polarizirana svetloba sestoji iz dveh cirkularno polariziranih komponent z enako jakostjo. Ena komponenta je levosučna (L, v nasprotni smeri urinega kazalca), ena pa desnosučna (R, v smeri urinega kazalca). CD nam da informacijo o neenakomerni absorbciji levo in desnosučne cirkularno polarizirane svetlobe optično aktivnih molekul. Pri proteinih zaznamo absorbcijske maksimume v dveh območjih: v daljnem-UV območju (170–250 nm) zaradi peptidne vezi ter v bližnjem-UV območju (250–300 nm) zaradi aromatskih aminokislin. Spektropolarimetri, naprave za merjenje CD, merijo razliko v absorbanci med L in R komponentami ($\Delta A = A_L - A_R$), vendar so rezultati podani kot eliptičnost (θ) v stopinjah. CD spekter dobimo, ko je dikroizem merjen kot funkcija valovne dolžine. Iz analize cirkularnega dikroizma lahko pridobimo informacije o sestavi sekundarne zgradbe proteina (odstotek α -vijačnic, β -ploskev, naključnega zvitja, itd.), terciarne zgradbe, o konformacijskih spremembah proteinov itd. Različna sestava sekundarnih zgradb v posameznem proteinu da karakterističen CD spekter v daljnem-UV območju (Slika 12) (Kelly in sod., 2005; Anderluh in sod, 2009).

Slika 12: Prikaz CD spektra v daljnem-UV območju za tipične sekundarne zgradbe proteinov (Kelly in sod., 2005: 121)

Neprekinjena linija: α -vijačnica, dolga prekinjena linija: anti-paralelna β -ploskev, pikasta linija: tip I β -obrat, prečrtana prekinjena linija: podaljšana 3₁-vijačnica ali poli (Pro) II vijačnica, kratka prekinjena linija: neurejena zgradba.

3.2.5.2 Potek analize

CD smo merili v daljnem-UV območju za proteina LLO WT ter LLO Y406A v pufrih z dvema različnima pH vrednostma: 5,7 ter 7,5 (pH 5,7: 20 mM MES, 10 mM NaCl; pH 7,5: 20 mM Tris, 10 mM NaCl) pri temperaturi 20 °C. Z metodo cirkularnega dikroizma smo merili tudi temperaturno stabilnost sekundarne zgradbe v območju 20–80 °C pri dveh različnih pH vrednostih (5,7 ter 7,5). S pomočjo CD-ja smo določili tudi temperaturo tališča (Tm) posameznega proteina pri pH 5,7 in 7,5. Iz CD spektra pri 20°C smo izbrali vrednost valovne dolžine pri najglobljem minimumu CD spektra. Pri izbrani valovni dolžini smo izmerili CD v območju med 20–80 °C, pri čemer smo odčitali rezultat kot molarno eliptičnost v odvisnosti od temperature. Nato smo iz grafa določili Tm določenega proteina s pomočjo programa Origin in Boltzmannove funkcije (Enačba 1).

$$y = \frac{A_1 - A_2}{1 + e^{(x - x_0)/dx}} + A_2 \qquad \dots (1)$$

Boltzmannova funkcija. A_1 – začetna vrednost krivulje, A_2 – končna vrednost krivulje, x0 – prevojna točka krivulje, dx – časovna konstanta.

Merili smo v kivetah iz kvarčnega stekla z dolžino optične poti 1 mm. Končni volumen proteinskega vzorca v kiveti je bil 300 μ l. Proteinski vzorec smo pred meritvijo centrifugirali 60 min, nato smo v kiveto prenesli le zgornji sloj vzorca in se tako izognili morebitnim motečim oborinam, ki so se med centrifugiranjem posedle na dno.

3.2.6 Preučevanje agregacije proteinov

Agregacijo proteinov smo določili spektofotometrično, z merjenjem absorbance pri 600 nm. Ko se proteini združujejo v vse večje skupke, agregate, absorbanca pri 600 nm narašča. Agregacijo smo spremljali v odvisnosti od temperature pri dveh različnih pH vrednostih: 5,7 ter 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl). Meritve smo izvajali v kiveti iz kvarčnega stekla z magnetnim mešalom. V kiveto smo nanesli 1300 μ l proteina s koncentracijo 4 μ M, ki smo ga predhodno razredčili v ustreznem pufru. Signal pri 600 nm smo spremljali v temperaturnem območju 15–70 °C, s hitrostjo naraščanja temperature 1 °C na min in hitrosti mešanja 1000 vrt./min.

3.2.7 Merjenje triptofanskega spektra

Triptofan je aromatska aminokislina, ki prispeva k intrinzični fluorescenci proteinov. Poleg triptofana prispevata k fluorescenci tudi tirozin ter fenilalanin, vendar v veliko manjši meri. Intrinzična fluorescenca triptofana je odvisna od okolice oziroma raztopine, v kateri se protein nahaja. Spremembe emisijskega spektra nam kažejo na spremembe v konformaciji proteina. Tako imajo proteini, ki imajo več triptofanov skritih v hidrofobni notranjosti zgradbe, drugačen emisijski maksimum kot proteini z več triptofani na površini. Triptofan ima maksimalno emisijo pri 354 nm, kadar merimo proteinsko molekulo, ki ima povsem izpostavljene triptofane oziroma kadar merimo emisijski spekter aminokisline v vodni raztopini. Triptofansko fluorescenco vzbudimo pri 295–305 nm, saj se tako izognemo hkratnemu vzbujanju tirozina pri \leq 290 nm (Lakowicz, 2006). V kvarčno kiveto (optična pot 10 mm) smo odpipetirali 1 ml vzorca proteina s koncetracijo 0,05 mg/ml, ki smo ga predhodno razredčili v ustreznem pufru. Triptofanske spektre smo merili s fluorimetrom pri dveh različnih pH vrednostih: 5,7 in 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl), pri 25 °C, z vzbujanjem pri 295 nm ter emisijo med 300–400 nm. Hitrost meritve je bila 10 nm/min, širina reže pri ekscitaciji je bila 5 nm, širina reže pri emisiji pa 9 nm.

3.2.8 Analiza z diferenčno dinamično fluorimetrijo

3.2.8.1 Diferenčna dinamična fluorimetrija

Diferenčna dinamična fluorimetrija (DSF) je metoda, s katero iščemo pogoje, pri katerih je protein najbolj stabilen. Faktorji, ki lahko vplivajo na stabilnost proteina in jih lahko analiziramo s to metodo, so npr. pufri, soli, detergenti itd., katerih interakcije s proteinom so nespecifične. Analiziramo lahko tudi vezavo ligandov, ki stabilizirajo ali destabilizirajo protein, in katerih vezava na protein je specifična. Stabilnost proteina je povezana s prosto entalpijo razvitja ΔG_u , ki je temperaturno odvisna. Z naraščanjem temperature se stabilnost proteina in ΔG_u zmanjšujeta. ΔG_u je enaka nič, ko sta koncentraciji zvitega in razvitega proteina enaki. Temperatura, pri kateri so to zgodi, je definirana kot temperatura tališča (Tm) za protein, ki jo lahko določimo s številnimi metodami, med drugim tudi z metodo DSF. Metodo DSF lahko izvajamo s pomočjo naprave RT-PCR, kjer v mikrotitrnih ploščah lahko ob eni meritvi analiziramo tudi 96 in več različnih pogojev, v katerih se nahaja protein. Pri vsakem pogoju izmerimo Tm in na tak način lahko ugotovimo, če določen pogoj poveča (zviša Tm) ali pa zmanjša (zniža Tm) stabilnost proteina. S pomočjo fluorescentnih barvil spremljamo fluorescenco v odvisnosti od temperature, saj barvilo najbolje fluorescira v nepolarnem okolju, to je, ko se veže na izpostavljene hidrofobne dele ob razvijanju proteina. Rezultat meritve z metodo DSF je podan v obliki sigmoidne krivulje z intenziteto fluorescence v odvisnosti od temperature, kot je prikazano na Sliki 13. Fluorescentno barvilo SYPRO orange vzbudimo pri 492 nm, emisijo pa spremljamo pri 610 nm. Emisija je najmočnejša, ko se protein razvije in je barvilo vezano na hidrofobne dele proteina (Niesen in sod., 2007).

Slika 13: Primer krivulje intenzitete fluorescence v odvisnosti od temperature za protein citratno sintazo v prisotnosti barvila SYPRO Orange (Niesen in sod., 2007: 2213)

3.2.8.2 Potek analize

Pripravili smo pufre z različnimi pH vrednostmi: 5,0; 5,5; 5,7; 6,0; 6,5; 7,0; 7,5; 8,0 (20 mM natrijev acetat, 150 mM NaCl) ter z različno koncentracijo soli NaCl: 0 mM, 10 mM, 50 mM, 100 mM, 150 mM, 200 mM, 300 mM, 500 mM (20 mM NaH₂PO₄/Na₂HPO₄ pri pH 5,7 in 7,5) pri dveh pH vrednostih: 5,7 in 7,5. Denaturacijo proteinov smo spremljali v mikrotitrnih ploščah s 96 jamicami. Barvilo SYPRO orange smo redčili 2:5000 iz 5000-krat koncentrirane založne raztopine. Koncentracija posameznega proteina (LLO WT ter LLO Y406A) v posamezni jamici je bila 0,1 mg/ml. Končni volumen v posamezni jamici je bil 50 µl. Na vsaki plošči je bil posamezen pogoj v dveh paralelkah ter negativna kontrola (pufer in barvilo brez proteina).

Posamezna meritev je potekala v temperaturnem območju od 20 °C do 95 °C, s korakom po 0,02 °C na sekundo oziroma je program glede na začetni nivo fluorescence prilagodil čas, ki ga detektor potrebuje, da dobi dovolj signala. Iz rezultatov, ki jih je podal program LightCycler® 480, smo preverili pravilnost oblike vsake sigmoidne krivulje ter vrednost minimuma ter maksimuma krivulje. Podatke smo v programu Origin analizirali z uporabo Boltzmannove funkcije (Enačba 1), ki iz sigmoidnih krivulj določi prevojno točko krivulje, katera predstavlja temperaturo tališča.

3.2.9 Analiza z dinamičnim sipanjem svetlobe

3.2.9.1 Dinamično sipanje svetlobe

Dinamično sipanje svetlobe (DLS), poznano tudi pod imenom fotonska korelacijska spektroskopija (PCS) je metoda, ki delcem na osnovi njihovega Brownovega gibanja lahko izmeri intenziteto sipane svetlobe. Iz izmerjenih podatkov lahko izračunamo velikost teh delcev. Naprava osvetljuje vzorec z laserjem in analizira nihanje intenzitete sipane svetlobe. Ko osvetlimo delec z lasersko svetlobo, delec sipa svetlobo v vse smeri. Delci v raztopini niso nikoli stacionarni, saj se ves čas gibajo zaradi Brownovega gibanja. To je gibanje delcev zaradi naključnih trkov molekul tekočine, ki obdajajo delec. Pomembno dejstvo Brownovega gibanja za meritev DLS je, da se majhni delci gibljejo hitreje kot večji delci. Povezava med velikostjo delca in njegovo hitrostjo gibanja je definirana s Stokes-Einsteinovo enačbo (Enačba 2). Ker se delci ves čas gibljejo, se intenziteta odbite svetlobe ves čas spreminja. Naprava Zetasizer Nano meri intenziteto nihanja odbite svetlobe in to uporabi za izračun korelacijske funkcije (primerja vzorce sipanja svetlobe v času). Iz korelacijske funkcije nato izračuna distribucijo delcev. Osnovna distribucija velikosti je pridobljena iz podatkov o intenziteti nihanja svetlobe. Te podatke je nato možno pretvoriti z Mie-jevo teorijo v distribucijo delcev po volumnu. To je možno nato pretvoriti naprej v distribucijo velikosti delcev po številu delcev posamezne velikosti. Tako dobimo hidrodinamski radij, ki ni le informacija o osnovni velikosti delca, temveč podaja tudi informacijo o molekulah na površini proteina ter interakcijah z molekulami raztopine, saj je določen na podlagi Brownovega gibanja delca v raztopini (Zetasizer ..., 2007).

$$D_H = \frac{kT}{f} = \frac{kT}{3\pi\eta D} \qquad \dots (2)$$

Stokes-Einstein enačba. D_H – hidrodinamski radij, k – Boltzmannova konstanta (poznana), f – koeficient trenja delcev (poznan), η – viskoznost raztopine (poznana), T – absolutna temperatura (poznana), D – difuzijski koeficient (izračuna naprava iz izmerjene intenzitete signala po metodi kumulant).

3.2.9.2 Potek analize

Z DLS metodo smo analizirali proteina LLO WT ter LLO Y406A, ki smo ju razredčili v pufru za DLS s pH vrednostjo 5,7 ter 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 150 mM NaCl) do končne koncentracije 1 mg/ml. Vzorec smo inkubirali na ledu 15 min, nato pa centrifugirali 20 min pri 16.100 g in 4 °C. Po centrifugiranju smo 70 μ l vzorca prenesli v kiveto za merjenje DLS in jo vstavili v napravo Zetasizer Nano. Po končani meritvi smo podatke analizirali s programom Zetasizer v7.03.

3.2.10 Analiza z gelsko kromatografijo

3.2.10.1 Gelska kromatografija

Gelska kromatografija, imenovana tudi gelska filtracija ali velikostno-izločitvena kromatografija, je kromatografska tehnika, s katero ločujemo molekule glede na njihovo razliko v velikosti. Tipične aplikacije te metode so čiščenje proteinov, zamenjava pufra ter določitev molekulske mase. Nosilci v koloni so lahko iz različnih materialov (zamreženi polidekstrani, agaroza, polistiren, itd.), ki imajo tridimenzionalno mrežo definiranih por. Majhne molekule lahko dostopajo do večjega volumna por kot pa večje molekule, in tako majhne molekule zaradi ujemanja v pore potujejo počasneje in pridejo iz kolone za večjimi molekulami. Molekulsko maso lahko določimo s pomočjo standardov znanih molekulskih mas (Cox in Phillips, 2007).

3.2.10.2 Potek analize

Z gelsko kromatografijo smo analizirali naslednje proteine: LLO WT, LLO Y406A, PFO WT ter PFO Y381A. Za ločevanje smo uporabili kolono Superdex 200 10/300 GL, ki ima zamrežen nosilec agaroze in dekstranov z volumnom 24 ml in je optimalna za ločevanje molekul z velikostjo med 1.000–600.000 Da. Proteine smo razredčili do koncentracije 1 mg/ml in jih na kolono nanašali z 200 μ l zanko. Ločevanje je potekalo v pufru s pH vrednostjo 5,7 ter 7,4 (pH 5,7: 20 mM MES, 150 mM NaCl, 5 % (V/V) glicerol; pH 7,4: 20 mM NaH₂PO₄/Na₂HPO₄, 150 mM NaCl, 5 % (V/V) glicerol), s pretokom 0,5 ml/min.

3.2.11 Merjenje hemolitične aktivnosti

LLO je hemolitično aktiven protein, ki naredi pore v membranah rdečih krvničk (eritrocitov), zaradi česar eritrociti lizirajo. Kinetiko hemolitične aktivnosti smo spremljali spektofotometrično na čitalcu mikrotitrnih plošč. Hemolitično aktivnost smo merili pri različnih pH vrednostih (eritrocitni pufri s pH vrednostmi: 5,7; 6,0, 6,5; 7,0; 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl); 8,0; 8,5 (20 mM Tris, 140 mM NaCl). Goveje eritrocite smo najprej sprali z ustreznim eritrocitnim pufrom ter pripravili redčitve proteinov v ustreznem eritrocitnem pufru. Uporabili smo mikrotitrne plošče s 96 jamicami, kjer smo v prvo jamico k ustreznemu eritrocitnemu pufru dodali protein z želeno koncentracijo, nato pa smo v nadaljnjih jamicah naredili 2-kratne serijske redčitve. K 100 μ l proteinskega vzorca v posamezni jamici smo tik pred začetkom meritve na čitalcu dodali še 100 μ l govejih eritrocitov v ustreznem eritrocitnem pufru. Hemolizo smo spremljali z merjenjem absorbance pri 630 nm, 20 min pri sobni temperaturi (24 °C). Za analizo hemolitične aktivnosti smo uporabili LLO WT, LLO Y406A, PFO WT in PFO Y381A.

3.2.12 Test vezave proteinov na eritrocite

Pri testu vezave proteinov na eritrocite smo uporabili goveje eritrocite, ki smo jih sprali v eritrocitnem pufru s pH vrednostjo 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl). V istem pufru smo tudi redčili protein do želene koncentracije, nato pa eritrocite in protein inkubirali 20 min pri sobni temperaturi. Po inkubaciji smo raztopino proteinov in eritrocitov centrifugirali 20 min pri 22 °C in 16.100 g. Supernatant smo shranili za nanos na NaDS-PAGE gel, pelet pa smo ponovno sprali s pufrom in centrifugirali, da bi odstranili morebitne nevezane proteine. Prisotnost proteina ter eritrocitov v peletu in supernatantu smo preverili z NaDS-PAGE elektroforezo.

3.2.13 Test vezave proteinov na multilamelarne vezikle

3.2.13.1 Liposomi

Liposomi so sintetični vezikli in nastanejo, ko amfifilne molekule (npr. fosfolipidi) izpostavimo vodi. Glede na pogoje, v katerih se nahajajo, se amfifilne molekule uredijo v eno ali več koncentričnih dvoslojev, med katerimi se nahaja voda in v njej raztopljene snovi. Premer liposomov je lahko zelo različen, od 30 nm do več mikrometrov. Ponavadi jih glede na velikost imenujemo majhni unilamelarni vezikli (SUV, velikosti 20–100 nm), multilamelarni vezikli (MLV, velikosti 0,1 µm do nekaj µm), veliki unilamelarni vezikli (LUV, velikosti 0,1 do 1 µl) in vezikli celične velikosti (GUV, velikosti \geq 10 µm) (Gregoriadis in Perrie, 2010). Obstaja več tehnik za pripravo posameznih veziklov. Lastnosti in priprava GUV-ov je opisana v poglavju 3.2.16.1. MLV-ji. To so vezikli, ki vsebujejo več lipidnih dvoslojev (kot bi si predstavljali čebulo). SUV-i tvorijo le en lipidni. Ravno tako tudi LUV-i tudi tvorijo en lipidni dvosloj. V primeru, kadar želimo, da v vezikle ujamemo bioaktivne komponente (npr. zdravila), barvila ter druge substance, je bolje uporabiti LUV-e ter MLV-je, saj imajo večji notranji volumen (1-30 µl/µmol lipidov) kot SUV-i (0,2-0,8 µl/µmol lipidov) (Mayer in sod., 1986; Lasic, 1988). Pogosto uporabljeni fosfolipidi za pripravo liposomov so: 1-palmitoil-2-oleoil-sn-glicero-3-1,2-di-palmitoil-sn-glicero-3-fosfatidilholin fosfatidilholin (POPC), (DDPC), 1.2dimiristoil-sn-glicero-3-fosfatidilholin (DMPC), 1,2-dioleoil-sn-glicero-3fosfatidiletanolamin (DOPE), 1,2-dioleoil-sn-glicero-3-fosfatidilholin (DOPC), sfingomielin, itd. Izbira lipidov za pripravo liposomov vpliva na značilnosti liposomov: naboj na površini, fluidnost lipidnega dvosloja, prepustnost, itd. Holesterol je pogosto ena izmed glavnih sestavin liposomov, ki sama po sebi ne tvori dvosloja, lahko pa se vgradi v lipidni dvosloj, kjer predstavlja delež do 50 % celotnih lipidov. Tako lahko različna sestava liposomov vpliva na različno tvorbo por proteinov (Praper, 2010; Gregoriadis in Perrie, 2010).

3.2.13.2 Potek analize

MLV-ji so sestavljeni iz več slojev lipidnega dvosloja. Pripravili smo MLV-je z 0 % holesterola (100 % POPC) ter MLV-je s 50 mol % holesterola (POPC:CHO = 1:1). Holesterol in POPC smo raztopili v kloroformu in jih v bučki zmešali v ustreznem molskem razmerju. Kloroform smo iz bučke odpareli z rotavaporjem, da smo dobili film lipidov na dnu bučke. Lipidni film smo nato sušili še 2 uri v Savant DNA SpeedVac® koncentratorju. Posušenim lipidom smo dodali pufer za MLV s pH 5,7 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl), 7,4 (20 mM NaH₂PO₄/Na₂HPO₄, 140 mM NaCl) in jih s pomočjo steklenih kroglic in vorteksiranjem odcepili od bučke. Tako pripravljene lipide v pufru smo 3-krat zamrznili v tekočem dušiku in odmrznili, da so membrane popokale zaradi povečanja volumna ob zamrznitvi, nato pa so se pri odtajanju membrane ponovno zlile in so se na ta način lipidi dobro hidrirali s pufrom. Izmerili smo jim koncentracijo z encimskim testom Wako (Wako, ZDA) za določanje koncentracije fosfolipida B (za določanje koncentracije POPC) ter prostega holesterola C (za določanje koncentracije holesterola).

Tako pripravljenim MLV-jem smo dodali proteine (2500-kratni prebitek molarne koncentracije MLV-jev v primerjavi s proteinom). Končni volumen mešanice je bil 20 μ l. Mešanico proteinov in MLV-jev smo inkubirali 30 min pri sobni temperaturi. Za kontrolo morebitne vezave proteina na stene plastičnih epruvet smo uporabili le protein brez veziklov in ravno tako inkubirali. Po inkubaciji smo vzorce centrifugirali z namizno centrifugo 15 min pri 16.100 g in 24 °C. Odstranili smo supernatant in ga shranili za nanos na NaDS-PAGE gel. Pelet smo resuspendirali v 100 μ l pufra in ponovno centrifugirali 15 min pri 16.100 g in 24 °C. Supernatant in pelet resuspendirali v 20 μ l pufra, centrifugirali 15 min pri 16.100 g in 24 °C. Supernatant smo odstranili in shranili

za nanos na NaDS-PAGE gel. Ravno tako smo preostali pelet nanašali na NaDS-PAGE gel. Z NaDS-PAGE elektroforezo smo preverili, v katerih vzorcih se nahaja naš protein.

3.2.14 Analiza vezave proteinov na lipidne membrane s površinsko plazmonsko resonanco

3.2.14.1 Površinska plazmonska resonanca

Slika 14: Shematski prikaz senzograma (Beseničar in sod., 2006)

Senzogram je krivulja, ki prikazuje odziv po času. Zvišanje odziva je odvisno od mase snovi na površini senzorskega čipa. Senzorski čip je najprej uravnan s pufrom pred začetkom analize vezave ter se spira s pufrom med posameznimi fazami analize (bel pravokotnik). Analit se injicra na čip pri določeni koncentraciji za določen čas asociacije (črn pravokotnik). Koncentracija proteina na površini čipa (na katerem so imobilizirane membrane) se poveča zaradi vezave na membrane, česar rezulatat je povečanje odziva. Po fazi asociacije se senzorski čip spira z nosilnim pufrom in v fazi disociacije se protein spira iz membrane, kar vidimo kot upad odziva. Če je protein stabilno vezan na membrano, je potrebno površino liganda regenerirati. To običajno dosežemo z injiciranjem raztopine z visoko koncentracijo soli ali z nizkim ali visokim pH (siv pravokotnik). Če se je odstranil ves protein iz površine membrane, lahko izvedemo naslednjo analizo vezave.

Površinska plazmonska resonanca (SPR) je metoda, s katero lahko spremljamo afiniteto interakcij med molekulami. Naprava za merjenje je sestavljena iz mikrotekočinskega sistema, detektorja in senzorskega čipa. Senzorski čip je sestavljen iz steklene ploščice, prekrite s tanko plastjo zlata. Polarizirana svetloba iz laserja je usmerjena skozi medij z visokim lomnim količnikom (prizma) na medij z nizkim lomnim količnikom (senzorski čip). Polarizirana svetloba iz laserja je usmerjena pod takim kotom, da pride do popolnega odboja svetlobe. Fotoni polarizirane svetlobe lahko reagirajo s prostimi elektroni na sloju zlata. To privede do oscilacije prostih elektronov in s tem do upada intenzitete odbite svetlobe. Vpadni kot je odvisen od lomnega količnika medijev na obeh straneh površine

zlata. Medtem ko se lomni količnik medija na strani prizme ne spreminja, se lomni količnik na senzorskem čipu spremeni, ko se nanj vežejo snovi (npr. proteini). Spremembo lomnega količnika in s tem kota, pri katerem pride do SPR, spremljamo z napravo, ki izmeri intenziteto odbite svetlobe in to poda v obliki senzograma (Slika 14) (Beseničar in sod., 2006; Schasfoort in Tudos, 2008).

3.2.14.2 Potek analize

Za preučevanje vezave LLO na lipidne membrane smo pripravili LUV-e z 0 % holesterola (100 % POPC) ter s 50 mol % holesterola (POPC:CHO = 1:1). Holesterol in POPC smo raztopili v kloroformu in ju v bučki zmešali v ustreznem molskem razmerju. Kloroform smo iz bučke odpareli z rotavaporjem, da smo dobili film lipidov na dnu bučke. Lipidni film smo nato sušili še 2 uri v Savant DNA SpeedVac® koncentratorju. Posušenim lipidom smo dodali pufer za SPR (pH 5,7 ter pH 7,4: 20 mM NaH₂PO₄/Na₂HPO₄, 300 mM NaCl) in jih s pomočjo steklenih kroglic in vorteksiranjem odstranili od bučke. Tako pripravljene lipide v pufru smo 3-krat zamrznili v tekočem dušiku in odmrznili, da so membrane popokale zaradi povečanja volumna ob zamrznitvi, nato pa so se pri odtajanju membrane ponovno zlile in so se na ta način lipidi dobro hidrirali s pufrom. Dobili smo MLV-je, ki smo jih 31-krat spustili skozi ekstrudor z membrano s porami velikosti 100 nm. S tem smo pridobili LUV-e, ki smo jim določili koncentracijo z encimskim testom za določanje koncentracije fosfolipida B (za določanje koncentracije POPC) ter prostega holesterola C (za določanje koncentracije holesterola). Površinsko plazmonsko resonanco smo merili z refraktometrom Biacore® X v Infrastrukturnem centru za raziskave molekulskih interakcij na Biotehniški fakulteti Univerze v Ljubljani. Uporabili smo senzorski čip L1, ki ima na površini lipofilne dekstrane in tako omogoča vezavo intaktnih liposomov za študije interakcij med membranami in proteini. Nosilni pufer je bil pufer za SPR s pH vrednostjo 5,7 ali 7,4. Na čip z nanesenimi LUV-i oziroma brez LUV-ov (kontrola) smo vbrizgali protein LLO WT ali LLO Y406A s koncentracijo 30 nM. Zaporedni koraki in parametri pri analizi vezave z SPR so prikazani v Preglednici 15.

Korak	Pretok	Čas injiciranja	Čas spiranja
KOTAK	(µl/min)	(s)	(s)
nanos LUV-ov	1	600	
100 mM NaOH	30	60	
100 mM NaOH	30	60	
0,1 mg/ml BSA	30	60	
spiranje liposomov z nosilnim pufrom	30	90	300
30 nM LLO	30	90	300
100 mM NaOH	30	60	
40 mM OG/0,5 % NaDS (večkrat)	30	60	

Preglednica 15: Koraki nanosa na napravi za površinsko plazmonsko resonanco Biacore X pri merjenju jakosti vezave LLO WT in LLO Y406A na LUV-e

Pridobljene podatke smo v programu BIAevaluation v3.2 (GE Healthcare, Velika Britanija) uredili tako, da je začetna točka (čas = 0 s) predstavljala vbrizg proteina na lipide, nato pa smo podatkom za kontrolo in vezavo LLO na LUV-e odšteli signal ozadja (nosilni pufer).

3.2.15 Analiza aktivacije proteinov na membrani

S pomočjo SPR ter merjenjem fluorescence smo analizirali, kdaj posamezen protein tvori pore na membrani. Analizirali smo proteina LLO WT ter LLO Y406A. Za membranski sistem smo pripravili LUV-e po postopku, kot je opisan v poglavju 3.2.13.2, le da smo tokrat uporabili pufer z dodanim 50 mM kalceinom. Kalcein je fluorescentno barvilo, ki smo ga na ta način zapakirali v LUV-e. Nosilni pufer je bil pufer za SPR s pH vrednostjo 8,0 (20 mM NaH₂PO₄/Na₂HPO₄, 300 mM NaCl, 1 mM EDTA). Pufer za aktivacijo proteina na membrani pa smo uporabili pufer za aktivacijo s pH vrednostjo 5,7 (20 mM NaH₂PO₄/Na₂HPO₄, 300 mM NaCl, 1 mM EDTA). Zaporedni koraki in parametri pri analizi aktivacije na napravi za SPR so prikazani v Preglednici 16.

	Pretok	Čas iniicirania	Čas
Korak	$(\mu l/min)$	(8)	spiranja (s)
nanos LUV-ov	2	600	
spiranje prostega kalceina	60		300
spiranje liposomov z nosilnim pufrom	30		90
vbrizganje nosilnega pufra	30	90	
spiranje liposomov z nosilnim pufrom	30		90
vbrizganje nosilnega pufra	30	90	
vbrizganje pufra za aktivacijo pH 5,7 (F1)	30	90	
spiranje liposomov z nosilnim pufrom (F2)	30		90
vbrizganje 250 nM LLO (F3-asociacija, F4- disociacija)	30	90	90
spiranje liposomov z nosilnim pufrom (F5)	30		90
vbrizganje pufra za aktivacijo pH=5,7 (F6)	30	90	
vbrizganje 40 mM OG (F7)	30	90	
vbrizganje 40 mM OG (F8)	30	90	
vbrizganje 40 mM OG (F9)	30	90	

Preglednica 16: Koraki nanosa na napravi za površinsko plazmonsko resonanco Biacore X Z F1–F9, so označene frakcije, ki smo jih zbirali na napravi.

Z F1–F9, so označene frakcije, ki smo jih po 45 μ l zbirali na napravi Biacore X, nato pa prenesli v črne mikrotitrne plošče s polovičnim dnom in 96 jamicami. Fluorescenco smo frakcijam pomerili na čitalcu mikrotitrnih plošč, z ekscitacijo pri 495 nm in emisijo pri 520 nm.

3.2.16 Permeabilizacija veziklov celične velikosti

3.2.16.1 Vezikli celične velikosti (GUV-i)

GUV-i so sestavljeni iz lipidnih membran s premerom ≥10 µm. Obliko in fizikalne lastnosti posameznih GUV-ov v vodni raztopini lahko spremljamo v realnem času. Tako imajo študije fizikalnih in lastnosti v zgradbi na GUV-ih kar nekaj prednosti pred manjšimi liposomi, kot so LUV-i in SUV-i. Kljub temu je bilo narejeno veliko študij s fizikalnokemijskimi metodami na majhnih liposomih, saj lahko z njimi preučujemo veliko populacijo, a pri tem zaradi povprečnih vrednosti izgubimo kar nekaj informacij. S študijami na posameznih GUV-ih lahko pridobimo pomembne informacije, npr. kadar želimo opazovati fizične lastnosti membrane veziklov, kot je elastičnost in oblika oziroma kadar jih želimo spremljati v realnem času, ki pa jih pri LUV-ih in SUV-ih ne moremo (Tamba in sod., 2007). Poleg tega so GUV-i dovolj veliki (10-100 µm), da jih lahko opazujemo z optično mikroskopijo. GUV-e lahko pripravimo na več načinov, npr. z nežno hidracijo, elektroformacijo, itd. Z elektroformacijo običajno pridobimo veliko veziklov, a hkrati nastane tudi nekaj nezaželenih produktov, kot so intraluminalni vezikli - vezikli znotraj veziklov ter manjši vezikli od 10 µm. Za pripravo GUV-ov z elektroformacijo je pomembna pravilna izbira materiala elektrod in električne napetosti. Nekateri materiali ali previsoka električna napetost lahko namreč hidrolizirajo vodo. S tem se sprostijo H⁺ in OH⁻ ioni v raztopino, kar povzroči razpad lipidov s hidrolizo (Morales-Penningston in sod., 2011). Nastajanje GUV-ov z elektroformacijo poteka v vodnih raztopinah, pri čemer se uporabljajo sladkorne raztopine (npr. saharoza ali glukoza), saj zaradi različne gostote omogočajo sedimentacijo veziklov po končani elektroformaciji (Estes in Mayer, 2005). Predvideva se, da se GUV-i tvorijo ob izpostavitvi električnemu toku, ki povzroči mehanski stres. To vodi do destabilizacije in ukrivljanja lipidne membrane, tako da se tvorijo liposomi (Slika 15) (Dimitrov in Angelova, 1988).

Slika 15: Nastajanje GUV-ov (Estes in Mayer, 2005: 158)

3.2.16.2 Potek analize

Za pripravo GUV-ov smo uporabili metodo elektroformacije. Pripravili smo pufre (saharozni: 295 mM saharoza, 1 mM HEPES, 0,1 mM CaCl₂, 294 mOsmol, pH 5,6; glukozni: 295 mM glukoza, 1 mM HEPES, 0,1 mM CaCl₂, 294 mOsmol, pH 5,5; proteinski pufer: 10 mM HEPES, 150 mM NaCl, 0,1 mM CaCl₂, 294 mOsmol, pH 5,6) z različno gostoto in jim z osmometrom uravnali osmolarnost. Lipide, v naslednjem molskem razmerju POPC:CHO:r-DHPE = 50:50:0,5, smo raztopili v kloroformu do končne koncentracije 10 mM. 25 μ l lipidov smo nanesli na par platinastih elektrod, ki smo jih nato sušili 2 uri z rotavaporjem pri tlaku <50 mbar. Nato smo v vialo z 1,5 ml saharoznega pufra sterilno prenesli par elektrod. Elektrode smo priklopili na funkcijski generator električne napetosti po sledečem postopku pri sobni temperaturi:

- 2 h pri 10 Hz / 4 V,
- 15 min pri 5 Hz / 2 V,
- 15 min pri 2,5 Hz / 1 V,
- 30 min pri 1 Hz / 1 V.

Po končani elektroformaciji smo elektrode rahlo stresli, da so se nastali GUV-i odcepili od elektrod. GUV-e smo nato sedimetirali s sterilnim izoosmolarnim pufrom, tako da smo čisto počasi po kapljicah dodali 1 ml glukoznega pufra. Po 10 min smo ponovno čisto počasi dodali 3 ml ter po 15 min še 4,5 ml sterilnega proteinskega pufra in s tem zamenjali glukozni pufer s proteinskim pufrom. GUV-e smo pustili čez noč, da so se posedli na dno. Naslednji dan smo odstranili zgornjo plast, spodnjih 200 µl pa razdelili v alikvote po 20 µl.

Permeabilizacijo GUV-ov, ki jo povzroči LLO, smo spremljali s pomočjo fluorescentno označenih dekstranov (FD) različnih velikosti (4 kDa (FD4), 10 kDa (FD10), 20 kDa (FD20), 40 kDa (FD40)). Zmešali smo 3,5 μ l GUV-ov v proteinskem pufru (pH 5,6), 3 μ l LLO razredčenega v proteinskem pufru ter 0,5 μ l fluorescentno označenih dekstranov. Končna koncentracija dekstranov je znašala 0,1 mM za FD 4, 0,07 mM za FD10, 0,04 mM za FD20 in 0,02 mM za FD40. Končna koncentracija posameznega proteina je bila 500 nM. Raztopino smo nežno premešali in inkubirali v temi pri sobni temperaturi 45 min. Po 45 min smo 2 μ l vzorca nanesli na objektno stekelce, pogledali pod konfokalnim mikroskopom in določili odstotek permeabilizacije GUV-ov. Kot polne GUV-e smo šteli tiste, pri katerih je bil fluorescentni signal približno enake intenzitete zunaj in znotraj GUV-ov. Odstotek permeabilizacije smo izračunali po enačbi (3), kjer so GUV_{polni} vsi napolnjeni GUV-i večji od 10 μ m, GUV_{vsi} pa vsi GUV-i, večji od 10 μ m, ki smo jih prešteli.

% permeabilizacije =
$$100 \frac{\text{GUV}_{\text{polni}}}{\text{GUV}_{\text{vsi}}}$$
 ...(3)

FD, ki je še lahko prehajal skozi pore proteina, je predstavljaj velikostno mejo por, ki jih lahko tvori protein. Velikost smo podali kot Stokes-ov radij, ki je bil podan za vsak FD s

strani proizvajalca (Sigma, ZDA). Stokes-ov radij predstavlja dinamični radij, na katerega poleg velikosti molekule vpliva tudi mobilnost molekule v raztopini. Permeabilizacijo GUV-ov smo analizirali z opazovanjem pod konfokalnim invertnim mikroskopom z imerzijskim objektivom pod 40-kratno povečavo. Fluorescentno označene dekstrane, FITC (FD 4, FD 10, FD 20, FD 40), smo vzbujali z argonovim laserjem pri 488 nm, emisijo pa smo merili pri 500–530 nm. Rodamin (r-DHPE) smo vzbujali pri 543 nm s helij-neonskim laserjem, emisijo pa smo merili pri 605–650 nm. Slike smo analizirali s programom Leica LAS AF 2.5.1.

3.2.17 Kristalizacija

Kristalizacija proteinov vključuje sistematično spreminjanje številnih parametrov raztopine, ki vplivajo na topnost proteina, da bi našli ravnotežje med nastajanjem amorfnih oborin in rastjo kristalov. Topnost proteina v vodi je odvisna od njegove aminokislinske sestave in pogojev v okolju, kot so temperatura, pH in prisotnost drugih komponent v raztopini. Ko je koncentracija proteina nad mejo topnosti, raztopina postane prenasičena. Na tej točki začne protein agregirati. Agregacija se dogaja v dveh korakih, nukleacija in rast. Med nukleacijo se molekule proteina združujejo v stabilen kompleks, ki je lahko amorfna oborina ali mikrokristal. V fazi rasti z difuzijo do nukleacijskega kompleksa pridejo in se nanj pritrdijo dodatne proteinske molekule. Da lahko nastane prenasičena raztopina, potrebna za tvorbo kristalov, moramo spremeniti lastnosti nenasičeni raztopini tako, da se molekule ne morejo raztapljati v raztopini. Nasičenje lahko dosežemo z zvišanjem koncentracije proteina ali z zmanjšanjem topnosti proteina v raztopini. Topnost lahko zmanjšamo s spreminjanjem pH in temperature ter uporabo obarjalnih sredstev (precipitantov). Precipitanati so lahko soli ali organske spojine. Tako je potrebno sistematično preizkusiti številne pogoje, da pridemo do tistega, v katerem se bodo tvorili kristali določenega proteina. Obstaja več metod za izvedbo kristalizacije. Največkrat se uporablja metoda parne difuzije s sedečo ali visečo kapljico (Slika 16). V rezervoarju se nahaja precipitant v večji koncentraciji kot v kapljici, ki je sestavljena iz volumskega deleža proteinskega vzorca in deleža precipitanta (ti deleži so lahko spremenljivi, npr. 1:1, 2:1, 1:2). Zaradi razlike v osmolarnosti med kapljico ter rezervoarjem, voda iz kapljice prehaja v rezervoar. Volumen kapljice se zmanjšuje, koncentracija precipitanta in proteina se v kapljici zvišujeta in se tako inducira kristalizacija (Bollag in sod., 1996; Cox in Phillips, 2007).

Slika 16: Kristalizacijska metoda s parno difuzijo (Cox in Phillips, 2007: 985) A – s sedečo kapljico, B – z visečo kapljico.

3.2.17.1 Potek kristalizacije

S pomočjo kristalizacijskega robota Gryphon (Inštitut Jožef Štefan, Oddelek za biokemijo, molekularno in strukturno biologijo) smo nanesli proteina LLO WT in LLO Y406A ter kristalizacijske raztopine iz 6 komercialno dostopnih setov za kristalizacijo (Qiagen), ki uporablja metodo sedeče kapljice. Vsak set vsebuje 96 različnih, natančno definiranih raztopin z različnimi kombinacijami in koncentracijami precipitanta (polietilen glikol, heksandiol, izopropanol, etanol, itd.), soli (natrijev nitrat, natrijev sulfat, amonijev klorid, magnezijev klorid, itd.) in pufrov (Hepes, MES, Tris, itd.). Plošče za kristalizacijo vsebujejo 96 jamic za rezervoarje različnih sestav kristalizacijskih raztopin. Poleg vsakega rezervoarja je stojalce s tremi jamicami, kamor lahko nanesemo vzorec, tako da lahko robot nanese do 3 različne proteinske vzorce za posamezen pogoj na eno ploščo, ali pa en vzorec treh različnih koncentracij. Ker vsak set reagentov (JCSG Core Suite I-Priloga A, JCSG Core Suite II-Priloga B, JCSG Core Suite III-Priloga C, JCSG Core Suite IV-Priloga D, PACT Suite-Priloga E in Cryos Suite-Priloga F) vsebuje 96 različnih pogojev, smo lahko preverili, kateri izmed teh 576 pogojev so najbolj ugodni za kristalizacijo naših proteinov. V posamezno jamico je robot odpipetiral 0,1 µl LLO Y406A s koncentracijo 19 mg/ml in 0,1 µl kristalizacijske raztopine iz seta (v razmerju 1:1) ter 0,2 µl LLO WT s koncentracijo 13 mg/ml in 0,1 µl kristalizacijske raztopine iz seta (razmerje 2:1). Vsak rezervoar je vseboval 35 µl ustrezne kristalizacijske raztopine iz seta. Plošče smo neprodušno zalepili s prozornim lepilnim trakom in jih hranili v temi pri 21 °C. Proces kristalizacije smo spremljali s stereomikroskopom. Ugotovili smo, da je kristalizacijska raztopina, ki vsebuje 0,2 M CaCl₂, 0,1 M Tris pH 8,0 ter 20 % (m/V) PEG 6000, ustrezna za nastajanje kristalov. Zato smo ta pogoj ročno kristalizirali v večjem merilu s sedečo kapljico. V tem primeru smo na okrogla silikonizirana stekelca za kristalizacijo nanesli po tri kapljice. Ena kapljica je vsebovala 2 µl proteina LLO Y406A s koncentracijo 19 mg/ml in 1 µl raztopine iz rezervoarja (razmerje 2:1). Druga kapljica je vsebovala 1 µl proteina in 1 μl raztopine iz rezervoarja (razmerje 1:1). Tretja kapljica 1 μl pufra, v katerem je bil raztopljen protein in 1 µl raztopine iz rezervoarja ter je služila kot negativna kontrola. Stekelca smo nato s kapljico navzdol namestili na plošče za celične kulture s 24 jamicami,

katerim smo predhodno na robove rezervoarja nanesli vazelin. Vsaka jamica v tej plošči je služila kot rezervoar za 700 μ l kristalizacijske raztopine. Kristalizacijske raztopine v rezervoarju in v kapljicah nad rezervoarjem so vsebovale kombinacije PEG 6000 (15 %, 17 %, 19 %, 20 %, 22 %, 24 %), CaCl₂ (0,16 M, 0,18 M, 0,2 M, 0,22 M) in 0,1 M Tris s pH 8,0. Tudi te plošče smo hranili v temi pri 21 °C ter jih redno pregledovali s stereomikroskopom.

4 REZULTATI

4.1 IZOLACIJA IN ČIŠČENJE

4.1.1 Čiščenje divjega tipa LLO z Ni-NTA afinitetno in gelsko kromatografijo

Supernant liziranih bakterijskih celic, ki so izrazile LLO WT, smo najprej nanesli na Ni-NTA afinitetno kolono. Slika 17A prikazuje kromatogram spiranja vzorca z LLO z Ni-NTA kolone, na Sliki 17B pa vidimo NaDS-PAGE gel posameznih frakcij.

Slika 17: Prva stopnja čiščenja LLO WT z Ni-NTA afinitetno kromatografijo

(A) Kromatogram prefiltriranega celičnega lizata LLO WT pri prvem nanosu na Ni-NTA kolono. (B) NaDS-PAGE gel vzorcev: BI – pred indukcijo *E.coli* celic za produkcijo proteina LLO WT, AI – po indukciji indukcijo *E.coli* celic za produkcijo proteina LLO WT, P – pelet celičnega lizata po centrifugiranju, PN – pred nanosom prefiltriranega vzorca na NiNTA kolono, F1 – nevezana frakcija od 0 do 170 ml, F2 – frakcija ob spiranju s pufrom s 30 mM imidazolom od 170 do 210 ml, F3 – frakcija ob spiranju s pufrom s 30 mM imidazolom od 210 do 230 ml, F4 – elucijska frakcija ob spiranju s pufrom s 300 mM imidazolom od 230 do 280 ml, F5 – elucijska frakcija od 280 do 300 ml, MW – označevalec velikosti, s puščico je označeno kje se nahaja LLO WT.

Na NaDS-PAGE smo nanesli tudi vzorca BI (pred indukcijo *E. coli* z IPTG za izražanje LLO) in AI (po indukciji z IPTG), da smo peverili stopnjo izražanja LLO WT po indukciji *E. coli* celic z IPTG: v vzorcu BI ni videti prisotnosti LLO WT, medtem ko je v vzorcu AI opaziti očitno liso velikosti okrog 60 kDa, kar nakazuje na prisotnost LLO WT (Slika 17). S pomočjo NaDS-PAGE gela lahko sklepamo, da se je glavni delež proteina nahajal v supernatantu liziranih celic, torej v topni obliki (vzorec PN). Nekaj proteina je ostalo v vzorcu peleta celic, kar pa najverjetneje ne pomeni, da je netopen, ampak da se verjetno vse celice niso povsem razbile, oziroma je pri peletu ostalo še nekaj supernatanta, ki ga nismo popolnoma odstranili. Pri izolaciji na koloni NiNTA se je večina proteina nahajala v

frakciji F4 (spiranje s 300 mM imidazolom), ki smo jo uporabili naprej v postopku izolacije, torej dializa in cepljenje s TEV proteazo.

Po dializi preko noči smo vzorec ponovno nanesli na kolono NiNTA (Slika 18). Po dializi je protein manjši za 3 kDa zaradi cepitve s TEV proteazo, zato se lisa proteina na NaDS-PAGE gelu nahaja nižje v vzorcu po dializi kot pred dializo.

Pri nanosu vzorca po dializi na kolono NiNTA smo ponovno spremljali absorbanco pri 280 nm in zbirali frakcije. Največ proteina se je nahajalo v nevezani frakciji F2, zato smo to frakcijo uporabili za nadaljnje čiščenje z gelsko kromatografijo.

Slika 18: Ni-NTA afinitetna kromatografija (drugi del) (A) Kromatogram vzorca LLO WT po dializi (in cepitvi s TEV proteazo). (B) NaDS-PAGE gel z nanesenimi vzorci: pred D – pred dializo, po D – po dializi, TEV – TEV proteaza, MW – označevalec velikosti, F1 – frakcija pred začetkom naraščanja kromatograma od 0 do 10 ml, F2 – nevezana frakcija od 10 do 90 ml, F3 – frakcija ob spiranju s pufrom s 300 mM imidazolom od 90 do 130 ml, s puščico je označeno, kje se nahaja LLO WT.

Pri gelski kromatografiji smo zbirali frakcije, katerih čistost smo preverili z NaDS-PAGE elektroforezo (Slika 19). Združili smo frakcije od F37 do F46. Po koncentriranju smo imeli 15 ml vzorca LLO WT s koncentracijo 3 mg/ml. To smo alikvotirali in shranili na -80 °C.

Slika 19: Gelska kromatografija LLO na koloni Superdex 200 10/300 GL

(A) Kromatogram dodatnega čiščenja proteina LLO WT z gelsko kromatografijo. Modra črta z napisom F označuje frakcije (F37–F46), ki smo jih združili in ta vzorec uporabili za nadaljnje analize. (B) NaDS-PAGE gel, kjer so nanesene določene frakcije za preverjanje čistosti.

Slika 20 prikazuje 2 µg očiščenega proteina LLO WT, ki smo ga uporabili za nadaljnje analize.

4.1.2 Čiščenje mutanta LLO Y406A z NiNTA afinitetno in gelsko kromatografijo

Supernatant celičnega lizata smo najprej očistili z nikelj afinitetno kromatografijo, pri čemer smo spremljali absorbanco pri 280 nm in zbirali ustrezne frakcije. V katerih frakcijah se nahaja mutant LLO Y406A, smo preverili na NaDS-PAGE gelu (Slika 21). Z gela lahko razberemo, da se največ proteina nahaja v frakciji F5, ki smo jo dializirali s TEV proteazo preko noči. Cepitev s TEV proteazo je bila uspešna, saj je bil protein v vzorcu po dializi ustrezno krajši.

Slika 21: Prva stopnja čiščenja LLO Y406A
(A) Kromatogram prefiltriranega celičnega lizata LLO Y406A pri prvem nanosu na Ni-NTA kolono. (B) NaDS-PAGE gel vzorcev: P – pelet celičnega lizata po centrifugiranju, PN – pred nanosom prefiltriranega vzorca na NiNTA kolono, F1 – nevezana frakcija od 0 do 160 ml, F2 – nevezana frakcija od 160 do 210 ml, F3 - frakcija ob spiranju s pufrom s 30 mM imidazolom od 210 do 240 ml, F4 – frakcija ob spiranju s pufrom s 30 mM imidazolom od 260 do 300 ml, F5 – elucijska frakcija (vzorec pred dializo) ob spiranju s pufrom s 300 mM imidazolom od 260 do 300 ml, MW – označevalec velikosti, poD - po dializi, TEV – TEV proteaza, F6 – elucijska frakcija od 300 do 310 ml, s puščico je označeno, kje se nahaja LLO Y406A.

Vzorec po dializi smo ponovno nanesli na kolono NiNTA in pri tem zbirali frakcije glede na spremembo absorbance (Slika 22). Nevezana frakcija je vsebovala protein LLO Y406A, elucijska frakcija pa TEV proteazo in nekatere nečistoče.

Prikazan je kromatogram vzorca LLO Y406A po dializi in cepitvi s TEV proteazo. Na kromatogramu so označene frakcije, ki smo jih zbirali: nevezana frakcija je vsebovala protein LLO Y406A, elucijska frakcija pa TEV proteazo in nekatere nečistoče.

Nevezano frakcijo z druge stopne Ni-NTA kromatografije smo nadalje čistili z gelsko filtracijo, pri kateri smo zbirali frakcije in vsebnost ter čistost proteinov preverili z NaDS-PAGE elektroforezo (Slika 23). Združili smo frakcije od F24 do F33. Po koncentriranju smo imeli 370 µl vzorca LLO Y406A s koncentracijo 9,7 mg/ml. To smo alikvotirali in shranili na -80 °C.

Slika 23: Gelska kromatografija LLO Y406A na koloni Superdex 200 10/300 GL (A) Kromatogram čiščenja proteina LLO Y406A z gelsko kromatografijo. Modra črta z napisom F označuje frakcije (F24–F33), ki smo jih združili in ta vzorec uporabili za nadaljnje analize. (B) NaDS-PAGE gel, kjer so nanesene določene frakcije za preverjanje čistosti.

Slika 24: Očiščen LLO Y406A, NaDS-PAGE gel

Slika 24 prikazuje 2 µg očiščenega proteina LLO Y406A, ki smo ga uporabili za nadaljnje analize.

4.1.3 Čiščenje divjega tipa PFO z Ni-NTA afinitetno in gelsko kromatografijo

Slika 25: Prva stopnja čiščenja PFO WT

(A) Kromatogram prefiltriranega celičnega lizata PFO WT pri prvem nanosu na Ni-NTA kolono. (B) NaDS-PAGE gel vzorcev: P – pelet celičnega lizata po centrifugiranju, PN – pred nanosom prefiltriranega vzorca na NiNTA kolono, F1 – nevezana frakcija od 10 do 145 ml, F2 – nevezana frakcija od 145 do 180 ml, F3 frakcija ob spiranju s pufrom s 30 mM imidazolom od 180 do 225 ml, F4 – frakcija ob spiranju s pufrom s 30 mM imidazolom od 225 do 260 ml, F5 – elucijska frakcija (vzorec pred dializo) ob spiranju s pufrom s 300 mM imidazolom od 260 do 330 ml, MW – označevalec velikosti, poD – vzorec po dializi, TEV – TEV proteaza, s puščico je označeno, kje se nahaja PFO WT.

Supernatant celičnega lizata smo najprej očistili z nikelj afinitetno kromatografijo, pri čemer smo spremljali absorbanco pri 280 nm in zbirali frakcije. V katerih frakcijah se nahaja PFO WT, smo preverili na NaDS-PAGE gelu (Slika 25): največ proteina je bilo v frakciji F5, katero smo nato dializirali s TEV proteazo preko noči. Cepitev s TEV proteazo je bila uspešna, saj je bil protein v vzorcu po dializi ustrezno krajši.

Vzorec po dializi smo ponovno nanesli na kolono NiNTA in pri tem zbirali frakcije glede na spremembo absorbance (Slika 26).

Prikazan je kromatogram vzorca PFO WT po dializi in cepitvi s TEV proteazo. Na kromatogramu so označene frakcije, ki smo jih zbirali: nevezana frakcija je vsebovala protein PFO WT, elucijska frakcija pa TEV proteazo in nekatere nečistoče.

Pri gelski kromatografiji smo zbirali frakcije, katerih čistost smo preverili z NaDS-PAGE elektroforezo (Slika 27). Združili smo frakcije od F13 do F21. Po koncentriranju smo imeli 5 ml vzorca PFO WT s koncentracijo 5,1 mg/ml. To smo alikvotirali in shranili na -80 °C.

Slika 27: Gelska kromatografija PFO WT na koloni Superdex 200 10/300 GL (A) Kromatogram čiščenja proteina PFO WT z gelsko kromatografijo. Modra črta z napisom F označuje frakcije (F13–F21), ki smo jih združili in ta vzorec uporabili za nadaljnje analize. (B) NaDS-PAGE gel, kjer so nanesene določene frakcije za preverjanje čistosti.

Slika 28 prikazuje 2 µg očiščenega proteina PFO WT, ki smo ga uporabili za nadaljnje analize.

4.1.4 Čiščenje mutanta PFO Y381A z Ni-NTA afinitetno in gelsko kromatografijo

Supernatant celičnega lizata smo najprej očistili z nikelj afinitetno kromatografijo, pri čemer smo spremljali absorbanco pri 280 nm in zbirali frakcije. V katerih frakcijah se nahaja PFO Y381A smo preverili na NaDS-PAGE gelu (Slika 29): največ proteina je bilo v frakciji F3, katero smo dializirali s TEV proteazo preko noči. Cepitev s TEV proteazo je bila uspešna, saj je bil protein v vzorcu po dializi ustrezno krajši.

Slika 29: Prva stopnja čiščenja PFO Y381A (A) Kromatogram prefiltriranega celičnega lizata PFO Y381A pri prvem nanosu na Ni-NTA kolono. (B) NaDS-PAGE gel vzorcev: P – pelet celičnega lizata po centrifugiranju, PN – pred nanosom prefiltriranega vzorca na NiNTA kolono, F1 – nevezana frakcija od 10 do 120 ml, F2 – frakcija ob spiranju s pufrom s 30 mM imidazolom od 120 do 180 ml, MW – označevalec velikosti, F3 - elucijska frakcija (vzorec pred dializo) ob spiranju s pufrom s 300 mM imidazolom od 180 do 240 ml, poD – vzorec po dializi, TEV – TEV proteaza, F4 – frakcija ob spiranju s pufrom s 300 mM imidazolom od 240 do 250 ml, FI – nevezana frakcija po drugem nanosu na NiNTA kolono od 5 do 95 ml, FII – frakcija ob spiranju s pufrom s 300 mM imidazolom pri drugem nanosu na NiNTA kolono od 95 do 120 ml; s puščico je označeno, kje se nahaja PFO Y381A.

Vzorec po dializi smo ponovno nanesli na kolono NiNTA in pri tem zbirali frakcije glede na spremembo absorbance (Slika 30). Iz NaDS-PAGE gela (Slika 29) lahko sklepamo, da se je protein izločil prvi frakciji (frakcija FI), saj se brez His-repka ni mogel vezati na kolono.

Slika 30: Ni-NTA afinitetna kromatografija (drugi del) Prikazan je kromatogram vzorca PFO Y381A po dializi in cepitvi s TEV proteazo. Na kromatogramu so označene frakcije, ki smo jih zbirali: nevezana frakcija je vsebovala protein PFO Y381A, elucijska frakcija pa TEV proteazo in nekatere nečistoče.

Nevezano frakcijo po drugi Ni-NTA kromatografiji smo nadalje čistili z gelsko filtracijo ter zbirali frakcije, katerih čistost smo preverili z NaDS-PAGE elektroforezo (Slika 31). Združili smo frakcije od F4 do F13. Po koncentriranju smo imeli 9 ml vzorca PFO Y381A s koncentracijo 3,4 mg/ml. To smo alikvotirali in shranili na -80 °C.

Slika 31: Gelska kromatografija PFO Y381A na koloni Superdex 200 10/300 GL (A) Kromatogram čiščenja proteina PFO Y381A z gelsko kromatografijo. Modra črta z napisom F označuje frakcije (F4–F13), ki smo jih združili in ta vzorec uporabili za nadaljnje analize. (B) NaDS-PAGE gel, kjer so nanesene določene frakcije za preverjanje čistosti.

Slika 32: Očiščen PFO Y381A, NaDS-PAGE gel

Slika 32 prikazuje 2 µg očiščenega proteina PFO Y381A, ki smo ga uporabili za nadaljnje analize.

4.2 CIRKULARNI DIKROIZEM

4.2.1 CD spektri v daljnem-UV območju

CD spektri so prikazani kot rezultat povprečja treh (pri pH 7,5) oziroma desetih (pri pH 5,7) meritev. CD spekter je podan kot molarna eliptičnost (deg cm² dmol⁻¹) v odvisnosti od valovne dolžine (nm). S primerjanjem spektrov med proteinoma LLO Y406A in LLO WT lahko opazimo manjše razlike med njima tako pri pH 5,7 kot tudi pri pH 7,5 (Slika 33). Najnižja točka spektra se pri proteinu LLO Y406A nahaja pri nižji valovni dolžni kot pri LLO WT. Pri LLO WT pri pH 5,7 in 7,5 je najnižja vrednost spektra pri 216 nm, medtem ko je pri LLO Y406A pri 5,7 in 7,5 pri 210 nm.

S primerjanjem spektrov posameznega proteina pri različnih pH vrednostih ne opazimo bistvenih razlik (Slika 33). Spektra za proteina pri pH 7,5 sta posneta le v območju med 200–280 nm, ker smo ugotovili, da pri valovni dolžini pod 200 nm CD signal vzorca z LLO niha in ni zanesljiv.

Slika 33: Primerjava CD spektrov LLO WT in LLO Y406A pri pH 5,7 in 7,5 Na grafu so prikazani CD spektri: LLO WT pri pH 5,7 (modra črta), LLO Y406A pri pH 5,7 (rdeča črta), LLO WT pri pH 7,5 (zelena črta), LLO Y406A pri pH 7,5 (črna črta).

4.2.2 Določanje temperaturne stabilnosti proteinov s pomočjo CD v daljnem-UV območju

Za posamezen protein smo spremljali stabilnost sekundarne zgradbe pri temperaturah od 20 °C do 80 °C na osnovi merjenje daljnih-UV spektrov CD. Rezultat so CD spektri pri posameznih temperaturah za določen protein. Opazili smo izjemno temperaturno stabilnost sekundarne zgradbe proteinov LLO WT in LLO Y406A pri pH 5,7 v temperaturnem območju 20–80 °C (Slika 34, Slika 36), medtem ko se CD spektri pri pH 7,5 v določeni temperaturni točki začnejo spreminjati pri obeh proteinih (Slika 35, Slika 37). Tako se drastično spreminjanje sekundarne zgradbe pri LLO WT pri pH 7,5 začne kazati v CD spektru pri približno 36 °C, pri LLO Y406A pa že pri nižji temperaturi in sicer pri približno 32 °C. Proteinoma pri pH 7,5 se po končanem temperaturnem gradientu in ohladitvi proteinskega vzorca nazaj na 20 °C sekundarna zgradba ne povrne v prvotno stanje, saj je CD spekter po ohladitvi najbližje tistemu pri najvišji temperaturi. Nasprotno pa velja za oba proteinska vzorca pri pH 5,7, kjer temperaturni gradient ne uniči sekundarne zgradbe proteina in so tako vsi CD spektri tudi po ohladitvi na 20 °C blizu začetnemu CD spektru.

Slika 34: CD spektri določanja temperaturne stabilnosti LLO WT pri pH 5,7 Prikazani so CD spektri v temperaturnem območju 20–80 °C za protein LLO WT s konc. 3,2 μM pri pH 5,7. Svetlo modra linija (nanjo kaže puščica) predstavlja CD spekter, posnet po temperaturnem gradientu in ohladitvi vzorca na 20 °C.

Slika 35: CD spektri določanja temperaturne stabilnosti LLO WT pri pH 7,5 Prikazani so CD spektri v temperaturnem območju 20–45 °C za protein LLO WT s konc. 3,2 μ M pri pH 7,5. Svetlo zelena linija (nanjo kaže puščica) predstavlja CD spekter, posnet po temperaturnem gradientu in ohladitvi vzorca na 20 °C.

Slika 36: CD spektri določanja temperaturne stabilnosti LLO Y406A pri pH 5,7 Prikazani so CD spektri v temperaturnem območju 20–80 °C za protein LLO Y406A s konc. 3,2 μM pri pH 5,7. Svetlo modra linija (nanjo kaže puščica) predstavlja CD spekter, posnet po temperaturnem gradientu in ohladitvi vzorca na 20 °C.

Slika 37: CD spektri določanja temperaturne stabilnosti LLO Y406A pri pH 7,5 Prikazani so CD spektri v temperaturnem območju 20–45 °C za protein LLO Y406A s konc. 3,2 μM pri pH 7,5. Svetlo zelena linija (nanjo kaže puščica) predstavlja CD spekter, posnet po temperaturnem gradientu in ohladitvi vzorca na 20 °C.

4.2.3 Določitev temperature tališča z merjenjem CD spektrov pri določeni valovni dolžini

Vrednost cirkularnega dihroizma smo merili pri eni valovni dolžini, in sicer tam, kjer je imel CD spekter v daljnem-UV območju najnižjo vrednost spektra (minimum), ter primerjali spremembo ter vrednosti s temperaturo v območju med 20 in 80 °C pri pH 5,7 in 7,5 (Slika 38, Slika 39). Pri obeh proteinih smo določili bistveno spremembo CD s temperaturo samo pri pH 7,5, ker pri pH 5,7 sploh ni prišlo do bistvenih sprememb s povečevanjem temperature, zato smo lahko Tm, pri kateri se spremeni sekundarna zgradba proteinov, iz CD spektrov določili le pri pH 7,5 s pomočjo Boltzmannove funkcije (Preglednica 17).

Slika 38: Eliptičnost (CD signal) pri določeni valovni dolžini v odvisnosti od temperature za LLO WT Modra linija - LLO WT s konc. 2,1 μM v pufru s pH 5,7 pri valovni dolžini 217 nm; črna linija – LLO WT s konc. 2,1 μM v pufru s pH 7,5 pri valovni dolžini 215 nm; rdeča linija – prilegana Boltzmannova funkcija

Slika 39: Eliptičnost (CD signal) pri določeni valovni dolžini v odvisnosti od temperature za LLO Y406A Modra linija – LLO Y406A s konc. 2,1 μM v pufru s pH 5,7 pri valovni dolžini 217 nm; črna linija – LLO Y406A s konc. 2,1 μM v pufru s pH 7,5 pri valovni dolžini 210 nm; rdeča linija – prilegana Boltzmannova funkcija.

Preglednica 17: Tm proteinov pri pH 7,5, določena z Boltzmannovo funkcijo iz izmerjenega CD signala Naredili smo eno ponovitev pri valovni dolžini 210 nm za LLO Y406A ter 215 nm za LLO WT.

Protein	Tm (°C)
LLO WT	39,5 °C
LLO Y406A	36,4 °C

4.3 AGREGACIJA PROTEINOV

CD meritve so pokazale, da se pri pH 7,5 dogajajo spremembe v zgradbi proteina z naraščajočo temperaturo. Z merjenjem absorbance pri 600 nm med 15 in 70 °C (Slika 40, Slika 41) smo preverili, če spremembe v zgradbi vplivajo tudi na agregacijo proteina v odvisnosti od temperature, tako pri pH 5,7 kot 7,4. Ugotovili smo, da oba proteina, LLO WT in LLO Y406A, agregirata pri višjih temperaturah pri pH vrednosti 5,7 kot pri pH vrednosti 7,4. Višja stabilnost pri pH 5,7 potrjuje rezultate CD meritev. Primerjava temperatur agregacije je prikazana na Sliki 42. LLO Y406A agregira pri nižji temperaturi kot LLO. Ko smo po končani meritvi vzeli kiveto iz spektofotometra, so v vseh vzorcih plavale z očesom vidne oborine oziroma agregati obeh proteinov (Slika 43).

Slika 40: Sipanje svetlobe v odvisnosti od naraščajoče temperature proteinov LLO WT in LLO Y406A pri pH 5,7

Na sliki sta prikazani krivulji sipanja svetlobe za: LLO WT (črna črta) in LLO Y406A (rdeča črta) pri pH vrednosti 5,7. Modri črti prikazujeta, kje se nahaja temperatura agregacije posameznega proteina s koncentracijo 4 µM. Temperaturo agregacije je program 845x UV-Visible ChemStation (Agilent Technologies, ZDA) izračunal z odvajanjem dobljenega signala absorbance pri 600 nm.

Slika 41: Sipanje svetlobe v odvisnosti od naraščajoče temperature proteinov LLO WT in LLO Y406A pri pH 7,4

Na sliki sta prikazani krivulji sipanja svetlobe za: LLO WT (črna črta) in LLO Y406A (rdeča črta) pri pH vrednosti 7,4. Modri črti prikazujeta, kje se nahaja temperatura agregacije posameznega proteina s koncentracijo 4 µM. Temperaturo agregacije je program 845x UV-Visible ChemStation (Agilent Technologies, ZDA) izračunal z odvajanjem dobljenega signala absorbance pri 600 nm.

Slika 42: Stolpci prikazujejo temperature, pri katerih je agregiral posamezni protein pri določenem pH-ju. Stolpci so rezultat povprečja dveh ponovitev, napake predstavljajo standardni odklon.

Slika 43: V kivetah je viden oborjen vzorec LLO WT pri pH 5,7 po končani analizi Srednja in desna slika prikazujeta stanje takoj po končani analizi (desna slika je za 90 ° obrnjena kiveta na srednji sliki). Leva slika pa prikazuje stanje, ko smo pustili kiveto še nekaj minut po analizi zunaj naprave, pri čemer so vidni kosmiči oborin razpadli na manjše in izgleda homogena motna raztopina. Enako so izgledali vzorci LLO WT pri pH 7,4 ter LLO Y406A pri pH 5,7 in 7,4 pri obeh ponovitvah.

4.4 TRIPTOFANSKI SPEKTER

Proteina LLO Y406A in LLO WT v svoji zgradbi vsebujeta 7 triptofanov, ki lahko prispevajo k jakosti izmerjenega signala pri vzbujanju proteinskega vzorca pri 295 nm.

Proteina imata enak triptofanski spekter in imata pri pH vrednosti 5,7 kot tudi 7,4 največji signal okrog 350 nm (Slika 44).

Slika 44: Triptofanski spekter proteinov

Prikazan je triptofanski spekter proteinov: LLO WT pri pH 5,7 (modra črta) in pH 7,4 (zelena črta), LLO Y406A pri pH 5,7 (rdeča črta) in pH 7,4 (roza črta).

4.5 DIFERENČNA DINAMIČNA FLUORIMETRIJA

Slika 45: Fluorescentni signal DSF v obliki sigmoidne krivulje dveh paralelk na eni plošči

Svetlo modro obarvan del krivulje predstavlja podatke, ki smo jih uporabili za izračun Tm. Tm je temperatura tališča proteina, izmerjena v prevojni točki (rdeča pika) sigmoidne krivulje.

Z diferenčno dinamično fluorimetrijo smo želeli preveriti, kako različni pogoji (pH vrednost in koncentracija soli NaCl) vplivajo na stabilnost proteinov LLO Y406A in LLO WT. Z napravo RT-PCR smo merili spremembo fluorescence barvila SYPRO orange v

odvisnosti od temperaturne denaturacije proteinov, kar smo zabeležili v obliki sigmoidne krivulje (Slika 45), iz katerih smo nato z Boltzmannovo funkcijo izračunali vrednosti Tm.

4.5.1 Vpliv pH vrednosti na stabilnost proteinov

DSF krivulje smo pomerili v pH območju 4,5–8,0 in pri vsakem pH določili Tm. Tako smo določili odvisnost Tm od pH in s tem temperaturno stabilnost proteinov. Vsak pogoj je rezultat povprečja 3 ponovitev, posamezna ponovitev pa je povprečje dveh paralelk na plošči. Iz Slike 46 vidimo, da sta proteina LLO Y406A in LLO WT najbolj stabilna pri pH vrednosti 5,5, saj je njuna Tm pri tej pH vrednosti najvišja. Obema proteinoma močno pade stabilnost, njuna Tm se zmanjša za 2 °C in več, pri pH pod 5,0 ter nad 6,0. LLO WT ima v vsem pH območju vrednost Tm višjo za približno 4 °C glede na LLO Y406A.

Slika 46: Temperaturna stabilnost proteinov, izmerjena z DSF, LLO WT in LLO Y406A pri različnih pH vrednostih

Vsaka točka predstavlja povprečje treh neodvisnih poskusov, znotraj vsakega je povprečje dveh ponovitev, napaka pa predstavlja standardni odklon.

4.5.2 Vpliv koncentracije soli na stabilnost proteinov

Proteinoma LLO WT in LLO Y406A temperaturna stabilnost narašča z naraščajočo koncentracijo soli (Slika 47). Oba proteina sta bolj stabilna pri pH 5,7 kot pri 7,5, LLO WT pa je bolj stabilen pri vseh koncentracijah soli pri istem pH kot LLO Y406A. Zanimivo je tudi, da nizka koncentracija soli (pod 50 mM) najbolj drastično vpliva na stabilnost proteina LLO Y406A pri pH vrednosti 5,7.

Slika 47: Temperaturna stabilnost proteinov LLO WT in LLO Y406A pri različnih koncentracijah soli Vsaka točka predstavlja povprečje treh neodvisnih poskusov, znotraj vsakega je povprečje dveh ponovitev, napaka pa predstavlja standardni odklon.

4.6 DINAMIČNO SIPANJE SVETLOBE

Rezultati dinamičnega sipanja svetlobe (Slika 48) so podani kot distribucija velikosti delcev po številu delcev. V Preglednici 18 je podan hidrodinamski radij proteinov (povprečen hidrodinamski radij izračunan iz distribucije števila delcev), ter polidisperznost vzorcev. Iz rezultatov polidisperznosti lahko sklepamo, da so proteini (LLO WT, LLO Y406A, PFO WT in PFO Y381A) monodisperzni, saj je odstotek polidisperznosti vrha, ki predstavlja monomerni proteini (Slika 48), pod 20 %. Hidrodinamska radija proteinov LLO Y406A in LLO WT imata vrednosti okoli 8 nm in se ne spremenita bistveno niti ob spremembi pH. Tudi pri primerjavi PFO WT in PFO Y381A z LLO WT in LLO Y406A ni opaziti bistvenih razlik, kar je skladno s pričakovanji glede na poznani zgradbi in molekulski masi obeh proteinov, ki sta zelo podobni.

Slika 48: Rezultati dinamičnega sipanja svetlobe

A – LLO WT pri pH 5,7; B – LLO WT pri pH 7,4; C – LLO Y406A pri pH 5,7; D – LLO Y406A pri pH 7,4. Na vsakem grafu so prikazane tri zaporedne meritve (rdeča, zelena in modra).

Preglednica 18: Hidrodinamski radij (povprečni premer števila delcev) in polidisperznost proteinov, izmerjenih z dinamičnim sipanjem svetlobe

Za vsak protein pri posan	1eznem pH (5,7 in 7,4)) so rezultati treh	n ponovitev. V	saka ponovitev je	povprečen
rezultat treh meritev.					

		Hidrodinamski radij Standardni odklon		Polidisperznost
Protein	pН	(nm)	treh ponovitev(nm)	(%)
LLO Y406A		8,3	0,47	12,5
LLO WT	5,7	7,8	0,75	17,0
LLO Y406A		8,4	0,41	13,2
LLO WT	7,4	7,4	0,82	22,3
PFO Y381A		8,3	1,49	20,3
PFO WT	5,7	8,3	0,15	18,4
PFO Y381A		7,9	0,04	20,9
PFO WT	7,4	8,5	0,19	15,1

Z gelsko kromatografijo na 24 ml koloni Superdex 200 smo analizirali elucijske volumne proteinov LLO WT, LLO Y406A, PFO WT ter PFO Y381A. Proteine smo primerjali z elucijskim volumnom proteina PFO WT, saj je njegov elucijski volumen glede na njegovo velikost (53 kDa) skladen z velikostnimi standardi na tej koloni. Iz rezultatov (Slika 49) je vidno, da mutant PFO Y381A potuje počasneje od divjega tipa PFO in se izloči iz kolone 2 ml kasneje (pri teoretični masi okoli 14 kDa glede na standard), čeprav imata praktično enako molekulsko maso (53 kDa). Proteina LLO WT ter LLO Y406A se glede na njuno molekulsko maso (56 kDa) eluirata kasneje, kot bi pričakovali glede na velikostne standarde in PFO WT. LLO WT pride iz kolone pri obeh pH (5,7 in 7,4) kasneje kot najmanjši standard teoretične mase 1 kDa (pri 24,5 ml pri pH 7,4 in pri 26,2 ml pri pH 5,7). LLO Y406A pri pH 7,4 pride iz kolone kot pri teoretični masi okoli 13 kDa (pri 18 ml) glede na standard, pri pH 5,7 pa pri teoretični masi okoli 7 kDa (pri 19,8 ml) glede na standard. Zelo zanimivo je potovanje LLO WT, saj se spere po 24 ml, kar je kasneje, kot je predvideno za katerikoli protein velikosti med 1.000-600.000 glede na to, da je volumen kolone 24 ml. Poleg tega opazimo, da LLO WT kot tudi LLO Y406A potujeta različno pri različnih pH vrednostih. Pri pH vrednosti 7,4 prideta namreč iz kolone 2 ml prej kot pri pH vrednosti 5,7.

Slika 49: Kromatogrami vzorcev LLO Y406A, LLO WT, PFO WT in PFO Y381A Prikazani so kromatogrami za: PFO WT pri pH 5,7 (črna črta), PFO Y381A pri pH 5,7 (vijolična črta), LLO WT pri pH 5,7 (modra črta) in LLO WT pri pH 7,4 (zelena črta), LLO Y406A pri pH 5,7 (rdeča črta), in LLO Y406A pri pH 7,4 (oranžna črta). S puščico je označeno, kje pride iz kolone velikostni standard BSA (67 kDa).

4.8 HEMOLITIČNA AKTIVNOST

Test hemolitične aktivnosti smo izvedli s proteinoma LLO Y406A in LLO WT na govejih eritrocitih, da bi primerjali njuno aktivnost. Poleg tega smo primerjali tudi njuno hemolitično aktivnost s proteinoma PFO WT ter PFO Y381A. Prikazani rezultati so povprečje treh ponovitev. Slika 50 prikazuje kinetiko hemolitične aktivnosti, merjeno pri 630 nm in 24 °C, za proteina LLO Y406A in LLO WT, ki sta sicer oba aktivna pri pH vrednosti 5,7, a maksimalno hemolitično aktivnost dosežeta pri različnih koncentracijah proteina. Za dosego maksimalno hemolitične aktivnosti z LLO Y406A potrebujemo višjo koncentracijo LLO Y406A v primerjavi z LLO WT, zato smo pri vseh nadaljnjih ponovitvah redčitveno vrsto za LLO Y406A začeli pri višji koncentraciji kot pri LLO WT. Pri pH 8,5 pa protein LLO Y406A povsem izgubi aktivnost tudi pri najvišji koncentraciji, kar je razvidno tudi iz kinetike, medtem ko LLO WT ohrani hemolitično aktivnost, ki se z višanjem pH le malo znižuje. Rezultati (Slika 51, Slika 52) so pokazali, da sta oba proteina najbolj aktivna pri pH vrednosti 5,7, a je LLO WT pr tem pH skoraj 10-krat bolj aktiven od LLO Y406A. Z nižanjem pH vrednosti se proteinoma znižuje tudi njuna hemolitična aktivnost. Proteinu LLO WT se aktivnost pri pH vrednosti 8,5 zmanjša za približno 10-krat glede na aktivnost pri pH vrednosti 5,7, a je kljub temu aktiven in sposoben popolne hemolize. Medtem ko proteinu LLO Y406A z nižanjem pH vrednosti veliko bolj drastično upada hemolitična aktivnost in pri fiziološki pH vrednosti 7,4 ni več sposoben lizirati eritrocitov niti pri najvišji efektivni koncentraciji proteina (0,4 mg/ml), ki smo jo dodali eritrocitom.

Drotain	Jamice na plošči za hemolizo											
FIOLEIII	1	2	3	4	5	6	7	8	9	10	11	12
LLO WT pH=5,7			-	- -		ل	ل	r J	\int	({
LLO Y406A pH=5,7				-		J		5	-			{
Konc. LLO WT, pH=5,7 (ng/ml)	1092,0	546,0	273,0	136,5	68,3	34,1	17,1	8,5	4,3	2,1	1,1	0,6
Konc. LLO Y406A, pH=5,7 (ng/ml)	6247,9	3124,0	1562,0	781,0	390,5	195,2	97,6	48,8	24,4	12,2	6,1	3,1
LLO WT pH=8,5	-	:				/						
LLO Y406A pH=8,5												
Konc. LLO WT, pH=8,5 (ng/ml)	2184,0	1092,0	546,0	273,0	136,5	68,3	34,1	17,1	8,5	4,3	2,1	1,1
Konc. LLO Y406A, pH=8,5 (ng/ml)	399800,0	199900,0	99950,0	49975,0	24987,5	12493,8	6246,9	3123,4	1561,7	780,9	390,4	195,2

Slika 50: Kinetika hemolitične aktivnosti LLO Y406A in LLO WT

Prikazane so krivulje absorbcije pri 630 nm (rdeče) pri različnih koncentracijah proteinov. Koncentracije proteinov v posameznih jamicah mikrotitrne ploščice so prikazane.

Slika 51: Hemolitična aktivnost proteinov LLO WT in LLO Y406A pri različnih pH vrednostih Prikazana je hitrost hemolize v odvisnosti od koncentracije proteinov pri različnih pH vrednostih.

Slika 52: S stolpci prikazana hemolitična aktivnost proteinov LLO WT in LLO Y406A pri različnih pH vrednostih

Stolpci prikazujejo koncentracijo proteina pri polovici maksimalne vrednosti hitrosti hemolize.

Hemolitično aktivnost proteinov LLO Y406A in LLO WT smo primerjali tudi s PFO WT ter PFO Y381A (Slika 53). Slednji ima mutacijo v PFO na mestu, ki je glede na 3D zgradbo na analognem mestu kot mutacija Y406A pri LLO. Tudi pri PFO sicer opazimo,

da je aktivnost tako PFO WT kot PFO Y381A pri pH 7,4 manjša kot pri pH 5,7, vendar pa na splošno med divjim tipom in mutantom ni take razlike v aktivnosti, kot v primeru LLO.

Slika 53: Hemolitična aktivnost PFO WT in PFO Y381A Prikazana je hitrost hemolize v odvisnosti od koncentracije proteinov pri različnih pH vrednostih.

4.9 TEST VEZAVE PROTEINOV NA ERITROCITE

Po inkubaciji proteinov LLO Y406A in LLO WT z eritrociti pri pH 7,4 smo vzorca centrifugirali ter nato pelet in supernatant ločeno nanesli na NaDS-PAGE gel, da bi preverili, ali sta se proteina vezala na membrane eritrocitov. Z NaDS-PAGE gela (Slika 54) lahko sklepamo, da se oba proteina LLO Y406A in LLO WT najverjetneje vežeta na eritrocite, saj je na gelu vidna lisa velikosti proteinoma mase 56 kDa, ki ustreza LLO v tistih jamicah, kamor smo nanesli pelet (jamice št. 2, 3, 9 in 11). V supernatantu na gelu ni opaziti očitnih lis, ki bi nakazovale na prisotnost nevezanega proteina (jamice št. 6, 7, 10 in 12). Možno je sicer tudi, da k tej lisi v velikosti LLO prispeva tudi kakšen drug protein iz eritrocitov, saj je vidna lisa v tej velikosti tudi, ko nanesemo eritrocite brez LLO (jamica št. 4). Ker s tem testom ne moremo povsem zagotovo trditi, ali se proteina vežeta ter primerjati njuno vezavo, smo se odločili, da na isti način izvedemo test z MLV-ji, ki ne vsebujejo drugih proteinov.

Slika 54: NaDS-PAGE gel vezave LLO Y406A in LLO WT na eritrocite

Na gelu se nahajajo vzorci v jamicah: $1-2,5 \ \mu g \ LLO \ Y406A; 2 - pelet vezanega \ LLO \ Y406A (2,5 \ \mu g) na eritrocite, sprane z 200 \ \mu l pufra; 3 - pelet vezanega \ LLO \ Y406A na eritrocite, sprane z 1 ml pufra; 4-eritrociti brez proteina; 5 - označevalec velikosti; 6 - supernatant nad peletom iz jamice 2; 7 - supernatant nad peletom iz jamice 3; 8-1 \ \mu g \ LLO \ Y406A; 9 - pelet vezanega \ LLO \ Y406A (1 \ \mu g) na eritrocite, sprane z 200 \ \mu l pufra; 10 - supernatant nad peletom iz jamice 9; 11 - pelet vezanega \ LLO \ WT \ (1 \ \mu g) na eritrocite, sprane z 200 \ \mu l pufra; 12 - supernatant nad peletom iz jamice 11.$

4.10 TEST VEZAVE PROTEINOV NA MULTILAMELARNE VEZIKLE

S tem testom smo želeli preveriti, pod katerimi pogoji se proteina LLO Y406A in LLO WT vežeta na MLV-je, ter primerjati njuno vezavo. Oba proteina, LLO Y406A in LLO WT, sta se vezala na MLV-je pri vseh analiziranih pH vrednostih (5,7, 7,4 in 8,0), kadar so vezikli vsebovali 50 % holesterola. To lahko vidimo na Sliki 55A in B ter na Sliki 56A, saj se lisa v velikosti proteinov (56 kDa) v največji meri nahaja pri jamici, v katero smo nanesli pelet MLV-jev po centrifugiranju. Razlike v jakosti vezave med proteinoma LLO Y406A in LLO WT iz slik NaDS-PAGE gelov ne opazimo. V primeru, ko smo proteina inkubirali z MLV-ji brez holesterola pri pH vrednosti 5,7 kot tudi 7,4, ne opazimo vezave proteinov na membrane. Tako se na Sliki 55C in D lisa v velikosti proteinov nahaja pri jamici, v katero smo nanesli supernatant po centrifugiranju (jamice št. 4 in 9).

Poleg tega smo želeli primerjati jakost vezave proteinov LLO Y406A in LLO WT s PFO WT na MLV-je s 50 % holesterolom pri pH vrednosti 8,0 (Slika 56). Vezava vseh proteinov je bila primerljiva glede na to, da se pri jamici, v katero smo nanesli supernatant, ne nahaja močna lisa (jamice št. A - 4, 9, B – 5).

Slika 55: Vezava LLO WT in LLO Y406A na MLV-je pri različnih pH ter vsebnostih holesterola NaDS-PAGE geli testa vezave LLO WT in LLO Y406A na MLV-je z različno koncentracijo holesterola in pri dveh pH-jih: **A** – vezikli s 50 % holesterola pri pH 5,7; **B** – vezikli s 50 % holesterola in pri pH 7,4; **C** – vezikli z 0 % holesterola pri pH 5,7; **D** – vezikli z 0 % holesterola pri pH 7,4. Na vseh štirih gelih številke jamic označujejo sledeče vzorce: $1 - 2 \mu g$ LLO Y406A; $2 - 1,8 \mu M$ LLO Y406A inkubiran in centrifugiran brez MLV-jev; 3 - pelet po inkubaciji in centrifugiranju 1,8 μM LLO Y406A z 4,4 mM MLV-ji; 4 supernatant nad peletom iz reakcije v jamici 3; 5 - označevalec velikosti; $6 - 2 \mu g$ LLO WT; $7 - 1,8 \mu M$ LLO WT inkubiran in centrifugiran brez MLV-jev; 8 - pelet po inkubaciji in centrifugiranju 1,8 μM LLO WT s 4,4 mM MLV-ji; 9 - supernatant nad peletom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 8.

Slika 56: Vezava proteinov na MLV-je pri pH 8,0 ter s 50 % holesterola

NaDS-PAGE geli testa vezave LLO WT, LLO Y406A in PFO WT na MLV-je s 50 % holesterola pri pH 8,0. **A** – številke jamic označujejo sledeče vzorce: $1 - 2 \mu g$ LLO Y406A; $2 - 1,8 \mu M$ LLO Y406A inkubiran in centrifugiran brez MLV-jev; 3 - pelet po inkubaciji in centrifugiranju 1,8 μM LLO Y406A z 3 mM MLV-ji; 4 - supernatant nad peletom iz reakcije v jamici 3; 5 - označevalec velikosti; $6 - 2 \mu g$ LLO WT; $7 - 1,8 \mu M$ LLO WT inkubiran in centrifugiran brez MLV-jev; 8 - pelet po inkubaciji in centrifugiranju 1,8 μM LLO WT z 3 mM MLV-ji; 9 - supernatant nad peletom iz reakcije v jamici 8; 10 - supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 3; 11 - supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 8. $\mathbf{B} - 1 -$ označevalec velikosti proteinov; $2 - 2 \mu g$ PFO WT; $2 - 1,9 \mu M$ PFO WT inkubiran in centrifugiran brez MLV-jev; 4 - pelet po inkubaciji in centrifugiranju 1,9 μM PFO WT z 3 mM MLV-ji; 5 supernatant nad peletom iz reakcije v jamici 4; 6 - prazna jamica; 7 - supernatant po 2-kratnem spiranju s pufrom iz reakcije v jamici 4.

4.11 POVRŠINSKA PLAZMONSKA RESONANCA VEZAVE PROTEINOV NA LIPIDNE MEMBRANE

S površinsko plazmonsko resonanco smo primerjali vezavo proteinov LLO Y406A in LLO WT na vezikle z ali brez holesterola pri dveh različnih pH vrednostih (Slika 58). Na Sliki 57 je na senzogramu prikazano zaporedje injiciranja raztopin in vzorca ter odgovarjajoči odzivi. Pri analizi jakosti vezave proteinov po 300 s disociacije (Slika 59) smo ugotovili, da se je LLO Y406A sposoben vezati na LUV-e s 50 % holesterola skoraj za polovico manj kot LLO WT pri obeh pH (5,7 in 7,4). Oba proteina se za 20 % močneje vežeta pri pH vrednosti 5,7 kot 7,4. Na vezikle brez holesterola pa se ne vežeta niti LLO Y406A niti LLO WT.

Slika 57: SPR senzograma, na katerih je s puščicami prikazano, kaj smo injicirali ob določenem času Spodnji senzogram, povečava zgornjega označena s kvadratom, natančneje prikazuje injiciranje proteina.

Slika 58: SPR senzogram vezave LLO WT ter LLO Y406A pri različnih pogojih (pH 5,7; pH 7,4; 0 % holesterola, 50 % holesterola)

Slika 59: Jakost vezave proteinov na lipide s 50 % ali 0 % holesterola pri pH 5,7 in 7,4 Stolpci prikazujejo SPR odziv po 300 s disociacije. Stolpci so povprečje treh neodvisnih poskusov, napake predstavljajo standardni odklon.

4.12 AKTIVACIJA PROTEINOV NA MEMBRANI

Poleg same vezave proteinov na membrano nas je zanimalo tudi, kdaj in v kolikšni meri proteina LLO Y406A in LLO WT naredita pore v membrani. To smo analizirali z

merjenjem fluorescence frakcij, ki smo jih zbirali ob vsakem injiciranju na SPR napravi Biacore X (Slika 60). Uporabili smo fluorescentno barvilo kalcein, ki je bil ujet v LUV-ih in se je sprostil ob odprtju veziklov z LLO (Slika 61).

LLO WT je sprostil kalcein iz LUV-ov s 50 % holesterolom pri pH vrednosti 8,0 takoj po injiciranju proteina na vezikle, to je v fazi asociacije. V fazi disociacije se je nato sprostilo še nekaj barvila. Preostalo barvilo se je sprostilo ob spiranju veziklov s senzorskega čipa z detergentom (40 mM OG) (Slika 61 – modri stolpci).

Povsem drugačno pa je bilo sproščanje barvila iz veziklov pri proteinu LLO Y406A pri pH 8,0. Iz senzograma vidimo (Slika 60), da se je LLO Y406A vezal na LUV-e, vendar se v fazi asociacije in disociacije ne sprosti barvilo iz veziklov. Šele ob injiciranju pufra s pH 5,7 na LUV-e, pri čemer se je znižal pH na površini LUV-ov, kjer je vezan protein LLO Y406A, se je protein aktiviral in sprostil barvilo iz veziklov. Preostali kalcein se je sprostil ob spiranju veziklov iz senzorskega čipa z detergentom (40 mM OG) (Slika 61 – rdeči stolpci).

Slika 60: Senzogram z označenimi frakcijami, ki smo jih zbirali na napravi SPR Modra črta – LLO WT; rdeča črta – LLO Y406A. pH v ozadju (nosilni pufer), pri asociaciji ter disociaciji je bil 8,0.

Slika 61: Fluorescentni signal frakcij, zbranih na SPR napravi ob vbrizganju posameznih vzorcev pH v ozadju (nosilni pufer), pri asociaciji ter disociaciji je bil 8,0. Prikazani so rezultati povprečja treh ponovitev, napaka predstavlja standardni odklon.

4.13 PERMEABILIZACIJA VEZIKLOV CELIČNE VELIKOSTI

S konfokalnim mikroskopom smo spremljali prehajanje fluorescentno označenih dekstranov (FD) iz okolice v notranjost GUV-ov preko por, ki sta jih ustvarila proteina LLO Y406A in LLO WT pri pH 5,6 po 45 min inkubacije proteinov z GUV-i pri sobni temperaturi. Dekstrani so bili različno veliki in je bilo zaradi tega njihovo prehajanje v nostranjost GUV-ov omejeno z velikostjo por. Na Sliki 62 vidimo primere polnih in praznih veziklov. Membrane so obarvane rdeče, zelena barva predstavlja raztopino s FD-ji, črna barva v notranjosti vezikla pa pomeni, da je vezikel prazen, saj dekstrani niso prešli skozi membrano v njegovo notranjost. S štetjem polnih in praznih GUV-ov ter izračunom odstotka permeabilizacije (Slika 63) smo ugotovili, da oba proteina LLO Y406A in LLO WT naredita dovolj velike pore, da skoznje prehaja FD velikosti 4 kDa kot tudi FD velikosti 10 kDa. Slednji očitno predstavlja velikostno mejo FD-jev, ki še lahko prehajajo skozi poro in tako nakazuje na velikost pore, ki sta jo proteina sposobna tvoriti. To je okrog 23 Å (2,3 nm) v primeru prehanja FD-jev. FD-ji velikosti 20 kDa ter 40 kDa niso prehajali. S primerjanjem odstotkov permeabilizacije GUV-ov obeh proteinov opazimo tudi, da je pri LLO WT v vseh primerih nekoliko večji odstotek permeabilizacije GUV-ov v primerjavi z LLO Y406A.

Slika 62: Slike permeabilizacije veziklov, posnete s konfoklanim mikroskopom A – GUV-i s FD 4 in brez proteina; B – GUV-i s FD 4 in LLO WT; C - GUV-i s FD 4 in LLO Y406A; D -GUV-i s FD 10 in brez proteina; E – GUV-i s FD 10 in LLO WT; F – GUV-i s FD 10 in LLO Y406A; G – GUV-i s FD 20 in brez proteina; H – GUV-i s FD 20 in LLO WT; I – GUV-i s FD 20 in LLO Y406A; J – GUV-i s FD 40 in brez proteina; K – GUV-i s FD 40 in LLO WT; L – GUV-i s FD 40 in LLO Y406A.

Slika 63: Odstotki permeabilizacije GUV-ov za posamezen fluorescentno označen dekstran ob dodatku LLO oziroma brez pri pH 5,6

Stolpci so povprečje dveh neodvisnih poskusov, v vsakem vzorcu smo prešteli okrog 200 GUV-ov, napaka pa prikazuje standardni odklon.

4.14 KRISTALIZACIJA

V eni izmed jamic plošče s sedečo kapljico so zrastli kristali (Slika 64). V tej kapljici se je nahajal protein LLO WT s koncentracijo 13 mg/ml v razmerju protein : kristalizacijska raztopina = 2 : 1. Kristalizacijska raztopina je bila sestavljena iz sledečih komponent: 0,2 M kalcijev klorid, 0,1 M Tris s pH 8,0 ter 20 % (m/V) PEG 6000. Kristale smo analizirali z X-žarki na napravi X8 PROTEUM (Bruker, Nemčija) na Inštitutu Jožefa Štefana, kjer pa je bilo sipanje minimalno in ni bilo zadovoljivo za določitev zgradbe. Dobljene pogoje smo poskusili ponoviti na večji skali, delo je še v procesu.

Slika 64: Kristali LLO WT

5 RAZPRAVA

Do danes je bilo odkritih in okarakteriziranih že kar nekaj CDC-jev, a med njimi LLO predstavlja povsem unikaten toksin. LLO ima namreč pH odvisno delovanje, kar bakteriji *L. monocytogenes* omogoča pobeg iz vakuole v citosol, kjer LLO zaradi višjega pH in višje temperature (37 °C) agregira in se s tem deaktivira. S tem bakteriji omogoča, da lahko živi in se razmnožuje znotraj gostiteljeve celice. V Laboratoriju za molekularno biologijo in nanobiotehnologijo na Kemijskem inštitutu smo pripravili in prvi okarakterizirali mutant LLO, ki ima na mestu 406 tirozin zamenjan z alaninom in tako odkrili protein z veliko bolj specifičnim pH odvisnim delovanjem, kot v primeru divje oblike LLO.

V celicah *E. coli* smo uspeli preprosto in v veliki količini proizvesti tako LLO Y406A kot tudi LLO WT. Proteina sta se s postopkoma čiščenja, Ni-NTA afinitetno ter gelsko kromatografijo, očistila tako dobro, da pri nanosu 2 µg proteina na NaDS-PAGE gel ni bilo vidnih nečistoč. Isto velja tudi za proteina PFO WT ter PFO Y381A, ki smo ju proizvedli ter očistili z namenom, da bi ju pri analizah primerjali z LLO. Preliminarne raziskave na LLO Y406A pred začetkom našega dela so pokazale, da je LLO Y406A potencialno zelo zanimiv mutant LLO, saj je pokazal drugačno hemolitični aktivnost pri nevtralnem pH kot LLO WT. Zato je bil namen tega magistrskega dela, da podrobno opredelimo biofizikalne in biokemijske lastnosti tega mutanta.

Za opredelitev lastnosti LLO Y406A v primerjavi z LLO WT smo uporabili naslednje metode: cirkularni dikroizem, spremljanje agregacije proteinov, merjenje triptofanskega spektra, diferenčno dinamično fluorimetrijo, dinamično sipanje svetlobe, gelsko kromatografijo, merjenje hemolitične aktivnosti, test vezave proteinov na eritrocite in MLV-je, površinsko plazmonsko resonanco, analizo aktivacije proteinov na membrani, permeabilizacijo veziklov celične velikosti in kristalizacijo.

5.1 LASTNOSTI LLO Y406A V PRIMERJAVI Z LLO WT

Prve razlike med mutantom in divjim tipom smo opazili že pri meritvah lastnosti sekundarne zgradbe s CD. Opazili smo, da se je minimum CD spektra pri LLO Y406A nahajal pri nižji valovni dolžni kot pri LLO WT. Možno bi bilo, da mutacija Y406A spremeni sekundarno strukturo LLO Y406A v primerjavi z LLO WT ali pa se zaradi mutacije spremeni konformacija proteina v tolikšni meri, da vpliva na drugačen daljni-UV spekter. Mutacija očitno ne vpliva na položaj sedmih triptofanov v zgradbi LLO, saj nismo opazili bistvenih razlik v triptofanskih spektrih med LLO WT in LLO Y406A. Položaj triptofanov se zaradi mutacije verjetno ne spremeni, ker so triptofani v zgradbi LLO po večini izpostavljeni raztopini. V D4 se kar trije nahajajo v undekapetidu, ki služi za vezavo na membrano (Bavdek in sod., 2012), zato morajo za aktivnost ostati izpostavljeni in ne skriti v notranjosti. Sekundarna zgradba LLO WT in LLO Y406A je bila zelo stabilna pri pH 5,7 v celem temperaturnem območju od 20 °C do 80 °C, medtem ko se je pri pH 7,5

otehniška fakulteta, Študij biotehnologije, 2014

njuna sekundarna zgradba začela rušiti pri temperaturi nad 39,5 °C za LLO WT oziroma nad 36,4 °C za LLO Y406A. Po končanem temperaturnem gradientu in ohladitvi vzorca na 20 °C se pri pH 7,5 njuna sekundarna zgradba ni povrnila v prvotno stanje, temveč je ostala porušena. LLO Y406A je imel manj stabilno sekundarno zgradbo od LLO WT, saj je bila njegova temperatura tališča, pri kateri se spremeni sekundarna zgradba, pri pH 7,5 za 3 °C nižja kot pri LLO WT. Nižjo stabilnost LLO Y406A smo opazili tudi pri analizi agregacije in DSF.

Podobno, kot so pokazali Bavdek in sod. (2012) za LLO WT, da se agregacija zgodi v kislem pH pri višji temperaturi kot v nevtralnem, smo tudi mi opazili pri mutantu Y406A. LLO Y406A je bil tudi pri merjenju temperature agregacije nekoliko manj stabilen od LLO WT. Pri pH 7,4 sta proteina sicer agregirala pri podobnih temperaturah (mutant 1 °C prej), medtem ko je bila pri pH 5,7 temperatura agregacije mutanta za 3,5 °C nižja od divjega tipa. Zanimivo je, da se obema proteinoma sekundarna struktura v kislem pH ni spremenila kljub agregaciji, medtem ko se jima je sekundarna struktura pri agregaciji v nevtralnem pH porušila.

Da mutacija vpliva na stabilnost LLO, smo potrdili tudi z metodo DSF. Ugotovili smo sicer, da sta bila proteina LLO Y406A ter LLO WT najbolj stabilna pri pH okrog 5,5, vendar je bila Tm za LLO WT pri tem pH približno 3 °C višja kot za LLO Y406A. Tm za mutanta so bile bistveno manjše od vrednosti za LLO WT v celem merjenem pH območju. Koncentracija soli je najbolj vplivala na LLO Y406A pri pH 5,7, kateremu se je močno zmanjšala Tm pri koncentraciji NaCl, nižji od 50 mM. Tudi rezultati DSF kažejo na to, da sta proteina v kislem pH bolj stabilna kot v bazičnem. Iz teh rezultatov tako poznamo tudi najbolj optimalne pogoje za delovanje oziroma v katerih pogojih sta proteina najbolj stabilna in je smiselno te pogoje uporabiti za pridobivanje, shranjevanje in delo s proteinom.

Hidrodinamski radij LLO Y406A, izmerjen z dinamičnim sipanjem svetlobe, je znašal okoli 8 nm, se ni spreminjal s pH ter je bil podoben hidrodinamskim radijem LLO WT, PFO WT in PFO Y381A, saj imajo zelo podobno velikost in zgradbo.

Zanimive pa so razlike v potovanju LLO Y406A ter LLO WT pri ločevanju z gelsko kromatografijo. Oba proteina sta potovala po 24 ml koloni počasneje, kot bi to pričakovali glede na velikostne standarde. LLO WT se je izločil iz kolone še kasneje, kot je predvideno za najmanjši standard (1 kDa) na tej koloni. LLO Y406A se je ravno tako izločil kasneje glede na velikostni standard, a 6 ml pred LLO WT. Tudi pH raztopine je vplival na potovanje LLO Y406A in LLO WT po koloni, saj sta se proteina pri pH 5,7 izločila 2 ml kasneje kot pri pH 7,4. Zamaknjeno potovanje po koloni gre očitno na račun narave LLO, saj se skoraj enak protein po velikosti in zgradbi, PFO WT, izloči skladno z velikostnimi standardi. Na drugačno obnašanje pa vpliva tudi mutacija, kar se izkaže tako v primeru LLO Y406A kot tudi PFO Y381A, ki se izloči iz kolone za PFO WT. Glede na to, da sta LLO in PFO po velikost in obliki molekule zelo podobna, so verjetno za

nenavadno potovanje LLO odgovorne dodatne interakcije na površini LLO z nosilcem, kar upočasni potovanje proteina po koloni. Konformacija LLO Y406A je očitno spremenjena v tolikšni meri, da nekoliko drugače interagira s kolono kot LLO WT. Kolona je sestavljena iz zamreženih dekstranov z agarozo, tako morda LLO interagira z dekstrani na koloni. Zanimivo bi bilo analizirati in primerjati vezavo LLO Y406A ter LLO WT z različnimi polisaharidi s pomočjo drugih metod (npr. SPR, termoforeza, itd.) ter ugotoviti, kateri del molekule je odgovoren za to interakcijo. Te informacije bi nam razširile znanje o biološki vlogi LLO. Ker bakterije ne vsebujejo holesterola v svojih membranah, se LLO nanje ne more vezati in tvoriti por, vendar pa imajo bakterije v membrane vključene sladkorje in v primeru, da se LLO lahko veže tudi na sladkorje, lahko morda tudi tvori pore v takšnih membranah. Poleg tega pa bi se odprle nove možnosti uporabe LLO Y406A v povezavi afinitete do sladkorjev z njegovo specifično pH odvisnostjo.

Najbolj zanimiva razlika med LLO Y406A in LLO WT je v njuni hemolitični aktivnosti. Za LLO WT je znano in smo ponovno pokazali, da je bil najbolj hemolitično aktiven v kislem pH, v nevtralnem pa se mu je aktivnost pri 24 °C le malo zmanjšala (Glomski in sod., 2002). Povsem drugačno aktivnost pa je imel LLO Y406A, saj je bila njegova aktivnost omejena na kisel pH. Aktiven je bil v kislem pH, kjer je bil primerljiv z LLO WT, v nevtralnem pH 7,4 pa praktično ni bil aktiven. Hemolitično aktivnost smo primerjali tudi s PFO WT, za katerega je znano, da ni odvisen od pH pri temperaturi 37 °C (Nomura in sod., 2007; Schuerch in sod., 2005). Mi smo merili hemolitično aktivnost pri 24 °C, kjer je bilo opaziti, da je bila hemolitična aktivnost PFO pri pH 7,4 skoraj 10-krat manjša kot pri pH 5,7. To sicer ne pomeni, da je pH odvisen, temveč ima najverjetneje pH pufra pri 24 °C vpliv na stabilnost in s tem tudi aktivnost PFO. pH odvisnost LLO WT je pogojena s temperaturo, saj se njegova aktivnost pri pH 7,4 zmanjša le pri temperaturah nad 30 °C (Schuerch in sod., 2005). LLO Y406A pa je pH odvisen že pri nizkih temperaturah in ga je tako možno regulirati le s spremembo pH.

Z analizo vezave proteinov na lipide smo prišli do zanimive ugotovitve. LLO Y406A se je namreč sposoben vezati na membrane tako v kislem kot v nevtralnem mediju, čeprav v nevtralnem ne kaže praktično nobene aktivnosti. Še več, vezave na MLV-je je bil LLO Y406A sposoben celo pri pH 8,0, kjer pa je sicer popolnoma neaktiven. Zanimivo je, da je bila jakost vezave LLO Y406A primerljiva z LLO WT pri vseh merjenih pH vrednostih (5,7, 7,4 in 8,0). Njuno vezavo smo primerjali tudi s PFO WT, saj PFO WT ni od pH odvisen CDC, zato pH ne vpliva na njegovo delovanje in vezavo. Ker je bila vezava PFO WT primerljiva z vezavo LLO WT in LLO Y406A, sklepamo, da pH bistveno ne vpliva na sposobnost vezave LLO WT in Y406A na membrane s holesterolom. Obvezno prisotnost holesterola v membranah za vezavo LLO pa smo potrdili tudi z našimi poskusi vezave na MLV-je kot tudi s površinsko plazmonsko resonanco (SPR).

S SPR smo jakost vezave proteinov na vezikle lahko ocenili tudi kvantitativno. Proteina LLO WT in LLO Y406A sta se vezala na vezikle s 50 % holesterola pri pH 5,7 in 7,4, medtem ko je bila njuna vezava zanemarljiva na veziklih brez holesterola. LLO Y406A se

je vezal za skoraj polovico šibkeje od LLO WT in oba proteina sta se vezala za 20 % šibkeje pri pH 7,4 v primerjavi z vezavo pri pH 5,7.

S pomočjo SPR in zbiranja frakcij fluorescentnega barvila, ki je bilo ujeto v veziklih, smo ponovno (Knap, 2013) pokazali, da je možno vezati protein LLO Y406A pri bazičnem pH ter ga naknadno aktivirati s spremembo pH-ja v kislo. Po znižanju pH-ja se je protein aktiviral, tako da je tvoril pore, skozi katere je nato izhajalo fluorescentno barvilo in služilo kot direkten dokaz nastanka por šele po spremembi pH v kislo. Drugače pa je bilo pri LLO WT, ki je tvoril pore tudi pri bazičnem pH in se je zato sprostilo barvilo iz veziklov takoj ob dodatku proteina veziklom pri pH 8,0. S tem poskusom smo tudi direktno dokazali, da LLO Y406A ne tvori por v bazičnem pH, temveč le v kislem, medtem ko LLO WT tvori pore tudi v bazičnem pH, in da je možno LLO Y406A reverzibilno aktivirati v kislem.

Zanimale so nas tudi potencialne razlike v velikostih por med LLO WT in LLO Y406A. S spremljanjem permeabilizacije GUV-ov pod konfokalnim mikroskopom smo ugotovili, da so skozi pore, ki jih je tvori LLO WT, lahko prehajali FD-ji velikosti 10 kDa, FD-ji velikosti 20 kDa in 40 kDa pa niso prehajali. Stokes-ov radij FD-jev, ki so še lahko prehajali skozi poro, je bil okoli 23 Å pri obeh proteinih, LLO WT in Y406A.

Kristalizirali smo tudi LLO WT, z namenom najti pogoje, ki bi tudi ustrezali kristalizaciji mutanta. Kristalizacija mutanta je trenutno v procesu.

5.2 MOLEKULSKI MEHANIZEM pH ODVISNOSTI LLO Y406A

pH je eden ključnih dejavnikov za stabilnost in delovanje proteina LLO, vendar v primeru LLO Y406A v še večji in bolj specifični meri kot pri LLO WT. Razlog je najverjetneje v tem, da je protein zgrajen in zvit tako, da je občutljiv na spremembo nabojev na njegovih aminokislinah ob spremembi pH iz kislega v bazičnega, kar lahko vodi do sprememb v njegovi konformaciji in posledično stabilnosti ter delovanju. Schuerch in sod. (2005) so odkrili kislo triado (D208, E247, D320), imenovano tudi pH stikalo, v domeni D3 ter druge aminokisline (Y206, K316, itd.), ki interagirajo s kislo triado in služijo kot pH senzor. Da mutacija Y406A res vpliva na kislo triado, smo potrdili s primerjavo hemolitične aktivnosti s PFO mutantom Y381A, ki je analogen LLO Y406A, a je imel podobno hemolitično aktivnost kot PFO WT. Ključna razlika med PFO in LLO je, da PFO ne vsebuje kisle triade v D3 in tako ni pH odvisen niti njegov mutant z mutacijo, ki ima pri LLO vpliv na mrežo interakcij, povezanih s kislo triado. Z določitvijo tridimenzionalne zgradbe LLO (Köster in sod., 2014) so odkrili tudi, da imajo Na⁺ ioni in molekule vode izreden pomen za stabilnost in delovanje LLO. Pri pH 5,7 je bilo pri LLO Y406A moč opaziti vpliv Na⁺ ionov na stabilnost, ki se je zmanjšala pod 50 mM NaCl. Aminokislina tirozin, na mestu 406, predstavlja eno ključnih aminokislin, saj preko Na⁺ iona in štirih molekul vode posredno interagira s kislimi aminokislinami D207/E209 in z Q216/K220 (Slika 11b). Mutacija na mestu 406 v alanin očitno poruši nekatere od pH odvisne interakcije, ki jih sicer lahko tvori tirozin, ki ima na obroču vezano polarno OH skupino. Alanin je veliko manjši od tirozina, kar verjetno vpliva na nekoliko drugačno konformacijo proteina, poleg tega pa alanin vsebuje v svoji stranski verigi le metilno skupino, ki očitno ni sposobna interagirati z Na⁺ in H₂O v taki meri kot tirozin. Tako mutacija tirozina v alanin na mestu 406 pri LLO povzroči, da v pogojih, kjer je bazičen pH, protein zavzame konformacijo, pri kateri ni zmožen tvoriti por. Mutacija Y406A se nahaja v domeni D2, ki se mora za tvorbo pore preoblikovati v tolikšni meri, da se domeni D1 in D3 lahko pomakneta bližje k membrani, da se lahko deli domene D3 vstavijo v membrano. Verjetno mutacija Y406A povzroči, da se zaradi spremembe konformacije tvorijo nove interakcije oziroma konformacijske ovire, zaradi česar se domena D2 v bazičnem pH ne morem preoblikovati ali pa se snopi vijačnic v domeni D3 ne morejo preoblikovati v transmemranske β -lasnice za tvorbo por. Ker se mutacija Y406A ne nahaja v domeni D4, ki je odgovorna za vezavo na membrano, se LLO Y406A lahko veže na membrano tudi v bazičnem pH. V bazičnem okolju LLO Y406A ostane vezan, dokler se pogoji ne spremenijo v kisel pH, ko lahko zavzame konformacijo, ki mu omogoča tvorbo por.

pH odvisno delovanje pa lahko najdemo tudi pri drugih proteinih, ki ne spadajo v družino CDC. Antraks (Collier in Young, 2003) in differijski toksin (Bennett in Eisenberg, 1994) sta podobno kot LLO aktivna le pri nizkem pH v endosomu, medtem ko pri nevtralnem pH zavzameta konformacijo, ki jima ne omogoča tvorbo por. Pri difterijskem toksinu so odkrili tri solne mostove (D47-H492, D97-K447, E148-K456), ki se najverjetneje porušijo, ko se zniža pH in so stranske verige protonirane (Bennett in Eisenberg, 1994). Ravno tako nekateri virusni proteini potrebujejo nizek pH za sprožitev zlitja virusne membrane z membrano gostiteljeve celice. Takšni so npr. človeški metapneumovirus (Chang in sod., 2012), virus Marburg (Harrison in sod., 2012), Ebola virus (Harrison in sod., 2011), hemaglutinin (Daniels in sod., 1985), Semliki Forest alfavirus (Liu in Kielian, 2009), itd. Vsem tem proteinom je skupno, da do aktivacije pri nizkem pH pride zaradi konformacijskih sprememb. Največji vpliv na konformacijske spremembe naj bi imel elektrostatski odboj med nabitimi aminokislinami, in ne vodikove vezi ter solni mostovi (hidrofilne interakcije). Tako je histidin pri nizkem pH protoniran in interagira (se odbija) z drugimi bazičnimi (protoniranimi) aminokislinami (lizinom, argininom ali histidinom). Obratno pa h konformaciji proteinov prispevajo pari asparaginske in glutaminske kisline, pri katerih so pri nizkem pH njune stranske verige deprotonirane, kar sprosti odboj med njimi in tako omogoča spremembo konformacije (Harrison in sod., 2013). Najverjetneje gre tudi pri LLO za podobne efekte, porušenje solnih mostov in elektrostatske odboje, med aminokislinami D208, E247, D320, Y206, K316, D207, E209, Q216, K220, S250, K252, Y303, Y348, S213, S215, E214, S404, Y78, D81 in Y406 (Slika 11). Izguba tirozina na mestu 406 tako poruši nekatere interakcije, ki bi jih LLO Y406A potreboval za delovanje v nevtralnem in bazičnem pH okolju. Zanimivo je, da pri LLO niso odkrili, da bi na pH odvisnost LLO vplival histidin. Najverjetneje zato, ker ima LLO le 6 histidinov, to je 1,2 % glede na vse aminokisline. Tako bi bilo zanimivo poleg mutacije Y406A uvesti še kakšno s histidinom na mestih, ki so pomembna za tvorbo por. Histidin ima namreč

disociacijsko konstanto pri pH okoli 6,0, kar omogoča spremembo naboja ravno na prehodu iz bazičnega v kislo in bi nam tako morda uspelo narediti dodatno pH regulacijo.

5.3 BIOTEHNOLOŠKA UPORABA LLO Y406A

Aktivnost LLO Y406A je možno uravnavati zgolj s spremembo pH tudi pri nizkih temperaturah. Dodatna prednost je, da se je zmožen vezati pri bazičnem pH, kjer še ni aktiven, in lahko naknadno tvori pore pri spremembi pH v kislo. Vse te lastnosti LLO Y406A predstavljajo osnovo za raznolike aplikacije tega proteina. V medicini bi ga lahko uporabili v sistemih za uničenje rakavih celic. Okolje rakavega tkiva je zakisano, zato bi LLO Y406A specifično tvoril pore v rakavih celicah in npr. hkrati omogočil vstop kemoterapevtika v citosol. Na ta način so Kullberg in sod. (2012) razvili sistem z liposomi, v katerih se nahaja kemoterapevtik, na liposomih pa so konjugirana protitelesa za tarčno dostavo ter LLO WT, ki omogoči vstop kemoterapevtika v citosol rakave celice. Podobno bi lahko namesto LLO WT aplicirali LLO Y406A, ki je še bolj pH odvisen in predstavlja dodatno varovalo proti nespecifičnemu uničenju celic pri potovanju liposomov do tarčnega mesta. Tudi brez protiteles bi lahko ustvarili sistem s pH-senzitivnimi liposomi (Karanth in Murthy, 2007) z ujetim LLO Y406A in kemoterapevtikom v notranjosti liposomov, podobno kot so to naredili Provoda in sod. (2003) z LLO WT. Ravno tako bi lahko ustvarili liposome z ionskimi kanali (Miller, 1987), znotraj katerih bi bil zapakiran LLO Y406A ter snovi, ki bi jih želeli sprostiti iz liposomov. Ko bi se liposom nahajal v kislem okolju, bi vanj prehajali ioni, ki bi znižali pH znotraj liposoma in tako aktivirali LLO Y406A. Na isti način bi bilo možno zapakirati fluorescentne molekule oziroma druge barvne indikatorje in tako tak sistem uporabiti za vizualizacijo zakisanega tkiva, npr. za študije na rastlinskih in živalskih modelih. Kot vizualni barvni pH senzor bi bilo mogoče ta sistem uporabiti tudi v celičnih kulturah, kjer bi padec pH zaznali vizualno, brez dodatnih testov in meritev, neposredno v kulturi. Seveda bi pri tem uporabili barvila, ki ne vplivajo na celično kulturo. Dodatna aplikacija v medicini so imunotoksini, kjer so še posebej zanimivi PFT-ji, npr. aktinoporini (Tejuca in sod., 2009). Velika pomanjkljivost toksinov, ki ne tvorijo por, je, da rabijo dodatne sisteme za internalizacijo. PFT-ji konjugiranimi s specifičnimi monoklonskimi protitelesi pa so tako izredno učinkoviti. Še posebej zanimiva bi bila povezava monoklonskega protitelesa z LLO Y406A, ki bi imel dvojno specifičnost (protitelo in pH odvisnost).

Na drugi strani pa bi lahko LLO Y406A brez veziklov služil kot avtoreguliran sistem za lizo celic v primeru, kadar je padec pH nezaželen oziroma je potrebna smrt celične kulture. Tako bi namesto škodljivih kemikalij za uničevanje celic načrtno znižali pH s kislino oziroma bi to storile celice same. To bi lahko uporabili tudi v večjih industrijskih procesih, kjer bi bil že med procesom v bioprocesni brozgi prisoten LLO Y406A in bi zaustavil proces z lizo produkcijskih celic ob padcu pH, saj se v določenih procesih takrat začnejo izločati stranski produkti, ki jih ne želimo. V industrijskih procesih bi se izognili tudi problemu imunogenosti, saj po končanem procesu ločimo produkt od ostalih snovi v

bioprocesni brozgi (LLO Y406A, itd.). Ravno tako bi v industrijskih procesih kot tudi v celičnih kulturah LLO Y406A v sistemu z vezikli lahko služil za avtoregulirano sproščanje določenih faktorjev, ki jih celice potrebujejo šele pri nizkem pH (npr. za boljšo produkcijo ali preusmeritev metabolizma v drugo smer), pri visokem pH pa so te snovi v kulturi nezaželene. Namesto veziklov z ionskim kanalom bi lahko v membrano vgradili majhne protonske črpalke (npr. porfirin (Sun in Mauzerall, 1996), rodopsin (Mukohata, 1999), spiropiran (Xie in sod., 2014), itd.), ki ne ovirajo potovanje vezikla in načeloma niso imunogene. Takšne protonske črpalke bi bilo mogoče aktivirati, da bi zakisale notranjost vezikla z obsevanjem želenega mesta. Tako bi se npr. v telesu iz veziklov sprostilo zdravilo na točno določenem mestu. Ideja je tudi, da bi bile v veziklu skupaj z LLO Y406A ujete snovi, ki bi ob sprostitvi zvišale pH v kulturi (npr. encimi, ki bi po sprostitvi razgradili določen substrat in zvišali pH).

6 SKLEPI

Rekombinantni protein LLO Y406A lahko pripravimo povsem primerljivo z LLO WT z izražanjem v *E. coli* in ga očistimo z Ni-NTA afinitetno kromatografijo ter gelsko kromatografijo.

Mutacija pri LLO na mestu 406, kjer je tirozin zamenjan z alaninom, povzroči manjše spremembe v daljnih-UV CD spektrih, vendar ne moremo trditi, da tudi spremembo v sekundarni zgradbi. Položaj triptofanov se zaradi mutacije ne spremeni, saj so triptofani v zgradbi LLO po večini izpostavljeni raztopini, v domeni D4 se kar trije nahajajo v undekapetidu, ki služi za vezavo na membrano, zato morajo za aktivnost ostati izpostavljeni in ne skriti v notranjosti.

LLO WT in LLO Y406A sta stabilna in aktivna v kislem pH (5,7) tudi pri temperaturah nad 40 °C, medtem ko v nevtralnem pH (7,4) agregirata ter se jima poruši sekundarna zgradba, ko temperatura doseže 39,5 °C pri LLO WT oziroma 36,4 °C pri LLO Y406A. Proteina sta najboj stabilna pri nizkem pH okoli 5,5. Koncentracija soli ima največji vpliv na stabilnost proteina LLO Y406A pri pH 5,7, kateremu se stabilnost zmanjša pri koncentraciji NaCl pod 50 mM. V splošnem je LLO Y406A manj stabilen od LLO WT, saj so njegove Tm nižje za okoli 3 °C v širšem pH območju.

Hidrodinamski radij LLO Y406A se s spremembo pH ne spreminja in znaša okoli 8 nm ter je primerljiv s hidrodinamskimi radiji proteinov (LLO WT, PFO WT, PFO Y381A), ki imajo podobno velikost in zgradbo.

LLO Y406A in LLO WT sta pokazala zelo zanimivo obnašanje pri ločevanju z gelsko kromatografijo. Oba potujeta počasneje, kot je predvideno z velikostnimi standardi ter PFO WT, s tem, da LLO Y406A potuje nekoliko hitreje od LLO WT. Oba proteina potujeta počasneje pri pH 5,7 kot pri pH 7,4. Predvidevamo, da imata proteina afiniteto do sladkorjev (dekstranov), iz katerih je sestavljena kolona.

LLO Y406A ima zelo specifično od pH odvisno delovanje. Hemolitično aktiven je le v kislem pH, v nevtralnem pH pa povsem izgubi aktivnost, medtem ko LLO WT pri nizkih temperaturah ohrani aktivnost tudi v bazičnem pH. LLO Y406A zaradi mutacije najverjetneje ni sposoben interakcij s kislo triado v nevtralnem in bazičnem pH, kar privede do konformacijskih ovir pri tvorbi pore.

Ker sta LLO Y406A ter LLO WT CDC-ja, sta se sposobna vezati na membrane le ob prisotnosti holesterola, tako v kislem kot tudi v bazičnem pH. LLO Y406A se je sposoben vezati v nekoliko manjši meri kot LLO WT. Ker sta oba proteina bolj stabilna in aktivna v kislem pH, sta tudi sposobna boljše vezave v kislem pH.

LLO WT tvori pore tako v kislem kot tudi bazičnem pH okolju, medtem ko se LLO Y406A v bazičnem pH le veže na membrane in se aktivira šele ob spremembi okolice v kislo.

Pore LLO WT in LLO Y406A prepuščajo FD-je s Stokes-ovim radijem okoli 23 Å.

Delovanje LLO Y406A je možno pri temperaturah okoli 25 °C uravnavati zgolj s spremembo pH vrednosti. Zaradi te posebne lastnosti in zmožnosti zelo specifične regulacije delovanja bi bilo možno LLO Y406A uporabiti za uravnavanje številnih procesov tako na nivju bazičnega raziskovanja kot tudi v industrijskih procesih.

7 POVZETEK

Listeriolizin O (LLO) je najbolj pomemben virulentni dejavnik bakterije *Listeria monocytogenes*, ki ga uvrščamo v družino CDC proteinov, ki v membranah tarčnih celic tvorijo transmembranske pore. LLO je med CDC-ji unikaten protein, saj je njegova zmožnost tvorbe por pH in temperaturno odvisna. V Laboratoriju za molekularno biologijo in nanobiotehnologijo na Kemijskem inštitutu smo pripravili in prvi okarakterizirali mutant LLO, ki ima na mestu 406 tirozin zamenjan z alaninom in tako odkrili protein z veliko bolj specifičnim pH odvisnim delovanjem, kot v primeru divje oblike LLO.

Zaradi mutacije je mutant LLO Y406A tudi temperaturno nekoliko manj stabilen od divjega tipa, a kljub temu sposoben vezave na membrano in hemolitične aktivnosti. LLO Y406A podobno kot divji tip pri pH 5,7 ohrani zgradbo in ne agregira pri temperaturah do 40 °C, medtem ko se pri pH 7,4 to zgodi že pri temperaturah nad 30 °C. LLO Y406A in LLO WT kažeta posebno obnašanje pri potovanju pri gelski kromatografiji. Zanimivo je, da divji tip potuje po koloni še počasneje od mutanta. Oba proteina prideta iz kolone kasneje kot njuni velikostni standardi, kar nakazuje na interakcije proteinov z nosilci na koloni (najverjetneje sladkorji). Na njuno potovanje pa ima očitno vpliv tudi raztopina, v kateri se nahajata proteina, saj imata pri različnih pH vrednostih različno potovanje pri gelski kromatografiji. LLO Y406A ima primerljiv hidrodinamski radij s približno enakimi proteini po velikosti in zgradbi (LLO WT, PFO WT in PFO Y381A), to je okoli 8 nm, in se ne spremeni ob spremembi pH raztopine. Pore LLO Y406A podobno kot pore LLO WT prepuščajo FD-je do velikosti 10 kDa (23 Å).

Mutant LLO Y406A je aktiven le v kislem, najverjetneje, ker zaradi zamenjave tirozina z alaninom v nevtralnem pH ni zmožen ustreznih interakcij s kislo triado preko Na⁺ ionov in molekul vode. Tako se domena D2 zaradi konformacijskih ovir ne more pomakniti bližje membrani oziroma se ne morejo tvoriti transmembranske β -lasnice. Ker se mutacija nahaja v domeni D2 in ne domeni D4, ki je odgovorna za vezavo LLO na membrane s holesterolom, se je LLO Y406A sposoben vezati na membrane tudi v bazičnem pH, kjer ostane vezan, dokler ne znižamo pH okolja v kislo in ga s tem aktiviramo, da tvori pore. Tako ga lahko tudi pri nižjih temperaturah (pod 30 °C) reguliramo zgolj s pH. To predstavlja osnovo za njegovo uporabo za farmacevtske in biotehnološke namene, kot so uravnavanje industrijskih in celičnih procesov s pH kontroliranim sproščanjem določenih substanc za regulacijo procesa ali lizo celic.

8 VIRI

- Allured V. S., Collier J. R., Carroll S. F., Mckay D. B. 1986. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proceedings of the National Academy of Sciences, 83, 5: 1320–1324
- Alouf J. E. 2003. Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia Microbiologica, 48, 1: 5–16
- Anderluh G., Lakey J. H. 2008. Disparate proteins use similar architectures to damage membranes. Trends in Biochemical Sciences, 33, 10: 482–490
- Anderluh G., Maček P. 2002. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon, 40: 111–124
- Anderluh G., Maček P., Sepčić K., Turk T. 2009. Eksperimentalne metode v biokemiji. Ljubljana, Študentska Založba: 132 str.
- Bavdek A., Gekara N. O., Priselac D., Gutierrez Aguirre I., Darji A., Chakraborty T., Maček P., Lakey J. H., Anderluh G. 2007. Sterol and pH interdependence in the binding, oligomerization, and pore formation of listeriolysin O. Biochemistry, 46, 14: 4425–4437
- Bavdek A., Kostanjšek R., Antonini V., Lakey J. H., Dalla Serra M., Gilbert R. J. C., Anderluh G. 2012. pH dependence of listeriolysin O aggregation and poreforming ability. The FEBS Journal, 279, 1: 126–141
- Beauregard K. E., Lee K.-D., Collier R. J., Swanson J. A. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. The Journal of Experimental Medicine, 186, 7: 1159–1163
- Bennett M. J., Eisenberg D. 1994. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Science, 3:1464-1475
- Beseničar M., Maček P., Lakey J. H., Anderluh G. 2006. Surface plasmon resonance in protein–membrane interactions. Chemistry and Physic of Lipids, 141: 169–178
- Birmingham C. L., Canadien V., Gouin E., Troy E. B., Cossart P., Higgins D. E., Brumell J. H. 2007. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy, 3, 5: 442–451
- Bollag D. M., Rozycki M. D., Edelstein S. J. 1996. Protein methods. 2nd ed. New York, Wiley-Liss, Inc: 415 str.
- Bourdeau R. W., Malito E., Chenal A., Bishop B. L., Musch M. W., Villereal M. L., Chang E. B., Mosser E. M., Rest R. F., Tang W.-J. 2009. Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. The Journal of Biological Chemistry, 284, 21: 14645–14656
- Chang A., Hackett B. A., Winter C.C., Buchholz U. J., Dutcha R. E. 2012. Potential electrostatic interactions in multiple regions affect human metapneumovirus Fmediated membrane fusion. Journal of Virology, 86, 18: 9843–9849
- Choe S., Bennett M. J., Fujii G., Curmi P. M. G., Kantardjieff K. A., John C. R., Eisenberg D. 1992. The crystal structure of diphtheria toxin. Nature, 357, 6375: 216–222
- Collier R. J., Young J. A. T. 2003. Anthrax Toxin. Annual Review of Cell and Developmental Biology, 19: 45–70
- Cossart P., Lebreton A. 2014. A trip in the "New Microbiology" with the bacterial pathogen Listeria monocytogenes. FEBS Letters, 588: 2437–2445
- Cossart P., Pizarro-Cerda J., Lecuit M. 2003. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends in Cell Biology, 13,1: 23–31
- Cossart P., Sansonetti P. J. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science, 304, 5668: 242–248
- Cossart P., Toledo-Arana A. 2008. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes and Infection, 10,9: 1041–1050
- Cox M. M., Phillips G. N. 2007. Handbook of proteins: structure, function and methods. New York, John Wiley & Sons Ltd.: 1319 str.
- Czajkowsky D. M., Hotze E. M., Shao Z., Tweten R. K. 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. The EMBO Journal, 23, 16: 3206–3215
- Daniels F. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell, 40: 431-439
- Decatur A. L., Portnoy D. A. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 290, 5493: 992–995
- Dimitrov D. S., Angelova M. I. 1988. Lipid swelling and liposome formation mediated by electric fields. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 253, 2: 323–336
- Dortet L., Mostowy S., Louaka A. S., Gouin E., Nahori M.-A., Wiemer E. A. C., Dussurget O., Cossart P. 2011. Recruitment of the major vault protein by InIK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathogens, 7, 8: e1002168, doi: 10.1371/journal.ppat.1002168: 17 str.
- Dramsi S., Cossart P. 2003. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infection and Immunity, 71,6: 3614–3618
- Estes D. J., Mayer M. 2005. Giant liposomes in physiological buffer using electroformation in a flow chamber. Biochimica et Biophysica Acta, 1712, 2: 152–160
- Farrand A. J., LaChapelle S., Hotze E. M., Johnson A. E., Tweten R. K. 2010. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proceedings of the National Academy of Sciences, 107, 9: 4341–4346
- Farrand S., Hotze E., Friese P., Hollingshead S. K., Smith D. F., Cummings R. D., Dale G: L., Tweten R. K. 2008. Characterization of a Streptococcal cholesteroldependent cytolysin with Lewis y and b specific lectin domain. Biochemistry, 47, 27: 7097–7107
- Feil S. C., Ascher D. B., Kuiper M. J., Tweten R. K., Parker M. W. 2014. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. Journal of Molecular Biology, 426, 4: 785–792

- Feil S. C., Lawrence S., Mulhern T. D., Holien J. K., Hotze E. M., Farrand S., Tweten R. K., Parker M. W. 2012. Structure of the lectin regulatory domain of the cholesteroldependent cytolysin lectinolysin reveals the basis for its Lewis antigen specificity. Structure, 20, 2: 248–258
- Gareau J. R., Lima C. D. 2011. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature Reviews Molecular Cell Biology, 11, 12: 861–871
- Gelber S. E., Aguilar J. L., Lewis K. L. T., Ratner A. J. 2008. Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. Journal of Bacteriology, 190, 11: 3896–3903
- Geoffroy C., Gaillard J.-L., Alouf J. E., Berche P. 1987. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin Listeriolysin O from Listeria monocytogenes. Infection and Immunity, 55, 7: 1641–1646
- Glomski I. J., Decatur A. L., Portnoy D. A. 2003. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infection and Immunity, 71, 12: 6754–6765
- Glomski I. J., Gedde M. M., Tsang A. W., Swanson J. A., Portnoy D. A. 2002. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. The Journal of Cell Biology, 156, 6: 1029–1038
- Gregoriadis, G., Perrie, Y. 2010. Liposomes. Encyclopedia of Life Sciences. Chichster, John Wiley & Sons, Ltd., doi: 10.1002/9780470015902.a0002656.pub2: 8 str.
- Hamon A. M., Batsche E., Regnault B., Tham T. N., Seveau S., Muchardt C., Cossart P. 2007. Histone modifications induced by a family of bacterial toxins. Proceedings of the National Academy of Sciences, 104, 33: 13467–13472
- Hamon M. A., Cossart P. 2011. K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infection and Immunity, 79, 7: 2839–2846
- Hamon M. A., Ribet D., Stavru F., Cossart P. 2012. Listeriolysin O: the Swiss army knife of Listeria. Trends in Microbiology, 20, 8: 360–368
- Harrison J. S., Higgins C. D., Chandran K., Ali J. R. 2011. Designed protein mimics of the Ebola virus glycoprotein GP2 a-helical bundle: stability and pH effects. Protein Science, 20: 1587-1596
- Harrison J. S., Higgins C. D., O'Meara1 M. J., Koellhoffer J. F., Kuhlman B. A., Ali J. R. 2013. Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure, 21, 7: 1085–1096
- Harrison J. S., Koellhoffer J. F., Chandran K., Ali J. R. 2012. Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain α-helical bundle. Biochemistry; 51, 12: 2515–2525
- Heuck A. P., Tweten R. K., Johnson A. E. 2003. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. The Journal of Biological Chemistry, 278, 33: 31218–31225

- Hotze E. M., Le H. M., Sieber J. R., Bruxvoort C., McInerney M. J., Tweten R. K. 2013. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infection and Immunity, 81, 1: 216–225
- Hotze E. M., Tweten R. K. 2012. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochimica et Biophysica Acta, 1818, 4: 1028–1038
- Iacovache I., van der Goot F. G., Pernot L. 2008. Pore formation: an ancient yet complex form of attack. Biochimica et Biophysica Acta, 1778, 7-8: 1611–1623
- Joseph B., Goebel W. 2007. Life of Listeria monocytogenes in the host cells' cytosol. Microbes and Infection, 9, 10: 1188–1195
- Karanth H., Murthy R. S. R. 2007 pH-sensitive liposomes principle and application in cancer therapy. Journal of Pharmacy and Pharmacology, 59: 469–483
- Kelly S. M., Jess T. J., Price N. C. 2005. How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751, 2: 119–139
- Kloft N., Neukirch C., Bobkiewicz W., Veerachato G., Busch T., von Hoven G., Boller K., Husmann M. 2010. Pro-autophagic signal induction by bacterial poreforming toxins. Medical Microbiology and Immunology, 199, 4: 299–309
- Knap P. 2013. Mehanizem delovanja listeriolizina O z mutacijo v domeni 2. Diplomsko delo. Ljubljana, Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo: 71 str.
- Korchev Y. E., Bashford C. L., Pederzolli C., Pasternak C. A., Morgan P. J., Andrew P. W., Mitchell T. J. 1998. A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochemical Journal, 577: 571–577
- Köster S., van Pee K., Hudel M., Leustik M., Rhinow D., Kühlbrandt W., Kühlbrandt W., Chakraborty T., Yildiz Ö. 2014. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nature Communications, 5: 1–14
- Kristan K. Č., Viero G., Dalla Serra M., Maček P., Anderluh G. 2009. Molecular mechanism of pore formation by actinoporins. Toxicon, 54: 1125–1134
- Kullberg M., Mann K., Anchordoquy T. J. 2012. Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. Molecular Pharmaceutics, 9: 2000-2008
- Lakowicz J. R. 2006. Principles of Fluorescence Spectroscopy. 3rd ed. New York, Springer: 954 str.
- Lam G. Y., Fattouh, R., Muise, A. M., Grinstein, S., Higgins, D. E., Brumell, J. H. 2012. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe, 10, 6: 627–634
- Lane F. C., Unanue E. R. 1972. Requirement of thymus (T) lymphocytes for resistance to listeriosis. Journal of Experimental Medicine, 135, 5: 1104–1112
- Lasic D. D. 1988. The mechanism of vesicle formation. Biochemical Journal, 256, 1: 1-11

- Lety M., Frehel C., Berche P., Charbit A. 2002. Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes. Molecular Microbiology, 46, 2: 367–379
- Lety M., Frehel C., Dubail I., Beretti J., Kayal S., Berche P., Charbit A. 2001. Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Molecular Microbiology, 39, 5: 1124–1139
- Li J., Carroll J., Ellar D. J. 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature, 353: 815–821
- Li J., Koni P. A., Ellar D. J. 1996. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. Journal of Molecular Biology, 257: 129–152
- Ligeon L., Temime-Smaali N., Lafont F. 2011. Ubiquitylation and autophagy in the control of bacterial infections and related inflammatory responses. Cellular Microbiology, 13, 9: 1303–1311
- Liu C. Y., Kielian M. 2009. E1 mutants identify a critical region in the trimer interface of the Semliki Forest virus fusion protein. Journal of Virology, 83, 21: 11298–11306
- Mackaness G. B. 1962. Cellular resistance to infection. Journal of Experimental Medicine, 116: 381–406
- Mayer L. D., Bally M. B., Hope M. J., Cullis P. R. 1986. Techniques for encapsulating bioactive agents into liposomes. Chemistry and Physic of Lipids, 40, 2-4: 333–345
- Meehl M. A, Caparon M. G. 2004. Specificity of streptolysin O in cytolysin-mediated translocation. Molecular Microbiology, 52, 6: 1665–1676
- Mengaud J., Vicente M.-F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero, F., Perez-Diaz, J.-C., Cossart, P. 1988. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infection and Immunity, 56, 4: 766–772
- Meyer-Morse N., Robbins J. R., Rae C. S., Mochegova S. N., Swanson M. S., Zhao Z., Virgin H. W., Portnoy D. 2010. Listeriolysin O inecessary and sufficient to induce autophagy during Listeria monocytogenes infection. PLoS One, 5,1: e8610, doi: 10.1371/journal.pone.0008610: 9 str.
- Miller C. 1984. Ion channels in liposomes. Annual Review of Physiology, 46: 549-558
- Morales-Penningston N. F., Wu J., Farkas E. R., Goh S. L., Konyakhina T. M., Zheng J. Y., Webb W. W., Feigenson G. W. 2011. GUV preparation and imaging: minimizing artifacts. Biochimica et Biophysica Acta, 1798, 7: 1324–1332
- Mukohata Y. Ihara K., Tamura T., Sugiyama Y. 1999. Halobacterial Rhodopsins. Journal of Biochemistry, 125: 649-657
- Murray E. G. D., Webb R. A., Swann M. B. R. 1926. A disease of rabbits characterized by large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). The Journal of Pathology and Bacteriology, 29: 407–439

- Niesen F. H., Berglund H., Vedadi M. 2007. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols, 2, 9: 2212–2221
- Nomura T., Kawamura I., Kohda C., Baba H., Ito Y., Kimoto T., Watanabe I. Mitsuyama M. 2007. Irreversible loss of membrane-binding activity of Listeria derived cytolysins in non-acidic conditions: a distinct difference from allied cytolysins produced by other Gram-positive bacteria. Microbiology, 153: 2250– 2258
- Olofsson A., Hebert H., Thelestam M. 1993. The projection structure of perfringolysin O (Clostridium perfringens theta-toxin). FEBS Letters, 319, 1-2: 125–127
- Palmer M., Harris R., Freytag C., Kehoe M., Tranum-Jensen J., Bhakdi S. 1998. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. The EMBO Journal, 17, 6: 1598–1605
- Parker M. W., Buckley J. T., Postma J. P. M., Tucker A. D., Leonard K., Pattus F., Tsernoglou D. 1994. Structure of the Aeromonas toxin proaerolysin in its watersoluble and membrane-channel states. Nature, 367: 292–295
- Parker M. W., Feil S. C. 2005. Pore-forming protein toxins: from structure to function. Progress in Biophysics and Molecular Biology, 88,1: 91–142
- Parker M. W., Pattus F., Tucker A. D., Tsernoglou D. 1989. Structure of the membrane-pore-forming fragment of colicin A. Nature, 337, 5: 93–96
- Petosa C., Collier R. J., Klimpel K. R., Leppla S. H., Liddington R. C. 1997. Crystal strucutre of the antrax toxin protective antigen. Nature, 385: 833–838
- Pizarro-Cerdá J., Cossart P. 2006. Bacterial adhesion and entry into host cells. Cell, 124, 4: 715–727
- Polekhina G., Giddings K. S., Tweten R. K., Parker M. W. 2005. Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proceedings of the National Academy of Sciences, 102, 3: 600–605
- Praper T. 2010. Model delovanja transmembranske pore človeškega perforina. Doktorska disertacija, Ljubljana, Univerza v Ljubljani, Medicinska fakulteta: 108 str.
- Provoda C. J., Stier E. M., Lee K.-D. 2003. Tumor cell killing enabled by listeriolysin Oliposome-mediated delivery of the protein toxin gelonin. The Journal of Biological Chemistry, 278: 35102-35108
- Py B. F., Lipinski M. M., Yuan J. 2007. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy, 3, 2: 117– 125
- Ramachandran R., Heuck A. P., Tweten R. K., Johnson A. E. 2002. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nature Structural Biology, 9, 11: 823–827

- Ramachandran R., Tweten R. K., Johnson A. E. 2004. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nature Structural & Molecular Biology, 11, 8: 697–705
- Ramachandran R., Tweten R. K., Johnson A. E. 2005. The domains of a cholesteroldependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proceedings of the National Academy of Sciences, 102, 20: 7139–7144
- Ribet D., Hamon M., Gouin E., Nahori M., Impens F., Neyret-Kahn H., Gevaert K., Vandekerckhove J., Dejean A., Cossart P. 2013. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature, 464, 7292: 1192–1195
- Rogers S., Wells R., Rechsteiner M. 1986. Acid sequences common to rapidly degraded Proteins: the PEST hypothesis. Science, 234, 4774: 364–368
- Rosado C. J., Kondos S., Bull T. E., Kuiper M. J., Law R. H. P., Buckle A. M., Bird P. I., Trapani J., Whisstock J. C., Dunstone M. A. 2008. The MACPF/CDC family of pore-forming toxins. Cellular Microbiology, 10, 9: 1765–1774
- Rossjohn J., Feil S. C., McKinstry W. J., Tweten R. K., Parker M. W. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell, 89, 5: 685–692
- Rothman J., Paterson Y. 2013. Live-attenuated Listeria-based immunotherapy. Expert Review of Vaccines, 12, 5: 493–504
- Qiagen Cryos Suite. Hilden, Qiagen: 4 str. http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054 294_ps_xtal_cryos-suite.pdf (junij 2014)
- Qiagen JCSG Core I Suite. Hilden, Qiagen: 4 str. http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054 295_ps_xtal_jcsg-core-i-suite.pdf (junij 2014)
- Qiagen JCSG Core II Suite. Hilden, Qiagen: 4 str. http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054 296_ps_xtal_jcsg-core-ii-suite.pdf (junij 2014)
- Qiagen JCSG Core III Suite. Hilden, Qiagen: 4 str. http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054 297_ps_xtal_jcsg-core-iii-suite.pdf (junij 2014)
- Qiagen JCSG Core IV Suite. Hilden, Qiagen: 4 str. http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1054 298_ps_xtal_jcsg-core-iv-suite_0309.pdf (junij 2014)
- Qiagen PACT Suite. Hilden, Qiagen: 4 str.
 - http://www.qiagen.com/products/protein/crystallization/compositiontables/pdf/1057 791_ps_xtal_pact-suite_update_160609_lowres.pdf (junij 2014)
- Schasfoort R. B. M., Tudos A. J. 2008. Handbook of surface plasmon resonance. Cambridge, Royal Society of Chemistry: 403 str.
- Schnupf P., Hofmann J., Norseen J., Glomski I. J., Schwartzstein H., Decatur A. L. 2006a. Regulated translation of listeriolysin O controls virulence of Listeria monocytogenes. Molecular Microbiology, 61, 4: 999–1012

- Schnupf P., Portnoy D. A., Decatur A. L. 2006b. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cellular Microbiology, 8, 2: 353–364
- Schnupf P., Zhou J., Varshavsky A., Portnoy D. A. 2007. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infection and Immunity, 75, 11: 5135–5147
- Schuerch D. W., Wilson-Kubalek E. M., Tweten R. K. 2005. Molecular basis of listeriolysin O pH dependence. Proceedings of the National Academy of Sciences, 102, 35: 12537–12542
- Shatursky O., Heuck A. P., Shepard L. A., Rossjohn J., Parker M. W., Johnson A. E., Tweten R. K. 1999. The mechanism of membrane insertion for a cholesteroldependent cytolysin: a novel paradigm for pore-forming toxins. Cell, 99, 3: 293–299
- Shaughnessy L. M., Hoppe A. D., Christensen K. A., Swanson J. A. 2006. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cellular Microbiology, 8, 5: 781–792
- Shepard L. A., Heuck A. P., Hamman B. D., Rossjohn J., Parker M. W., Ryan K. R., Johnson A. E., Tweten R. K. 1998. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-aelical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry, 37, 41: 14563–14574
- Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. 1996. Structure of Staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 274, 5294: 1859–1866
- Sun K., Mauzerall D. 1996. A simple light-driven transmembrane proton pump. Proceedings of the National Academy of Sciences, 93: 10758-10762
- Tamba Y., Ohba S., Kubota M., Yoshioka H., Yoshioka H., Yamazaki M. 2007. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes. Biophysical Journal, 92, 9: 3178–3194
- Thurston T. L. M., Wandel M. P., Muhlinen N., Von Foeglein Á., Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 482, 7385: 414–418
- Tilley S. J., Orlova E. V., Gilbert R. J. C., Andrew P. W., Saibil H. R. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell, 121, 2: 247–256
- Vadia S., Arnett E., Haghighat A.-C., Wilson-Kubalek E. M., Tweten R. K., Seveau S. 2011. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathogens, 7, 11: e1002356, doi: 10.1371/journal.ppat.1002356: 19 str.
- Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. J. 1987. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infection and Immunity, 55, 5: 1184–1189

- Xie X., Crespo G. A., Mistlberger G., Bakker E. 2014. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chemistry, 6: 202-207
- Xu L., Huang B., Du H., Zhang X. C., Xu J., Li X., Rao Z. 2010. Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein & Cell, 1, 1: 96–105
- Yano T., Mita S., Ohmori H., Oshima Y., Fujimoto Y., Ueda R., Takada H., Goldman W. E., Fukase K., Silverman N., Yoshimori T., Kurata S. 2009. Autophagic control of Listeria through intracellular innate immune recognition in drosophila. Nature Immunology, 9, 8:, 908–916
- Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., Kakizuka A., Sztul E., Chakraborty T., Sasakawa C. 2009. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biology, 11, 10: 1233–1240
- Zetasizer Nano user manual. 2007. Worcestershire, Malvern Instruments: 292 str.

ZAHVALA

Prva zahvala gre mentorju prof. dr. Gregorju Anderluhu, ki je sprejel mentorstvo in mi z ogromno znanja, potrpežljivostjo, nasveti in dostopom do najrazličnejše raziskovalne infrastrukture odprl vrata do nabiranja izkušenj in rezultatov. Zahvala gre tudi somentorici dr. Marjetki Podobnik, ki si je vedno vzela čas za pomoč in nasvete ter s kritičnim očesom pomagala najti smiselno rešitev.

Zahvaljujem se recenzentki prof. dr. Kristini Sepčić za hiter in strokovni pregled magistrske naloge ter vse nasvete, ki so pripomogli k izboljšanju.

Nikakor mi ne bi uspelo brez sodelavcev na Kemijskem inštitutu v Laboratoriju za molekularno biologijo in nanobiotehnologijo ter na Biotehniški fakulteti na Oddelku za biologijo, Katedra za biokemijo. Hvala Maticu, Mirijam, Tei, Omarju, Neži, Miši, Primožu, Sabini, Mihu, Davorju, itd. za strokovno pomoč ter krajšanje časa v laboratoriju. Hvala tudi Vesni Hodnik iz Infrastrukturnega centra za raziskave molekulskih interakcij za pomoč pri SPR.

Zahvala gre tudi Janu za ljubezen in potrpežljivost ter Vesni, s katero sva se med študijem, znotraj in zunaj vrat fakultete, motivirali, zabavali in si pomagali, da je študij postal prijetna izkušnja.

Poleg tega bi se zahvalila Božu za koristne nasvete in pomoč, Mariji Zagorc za lektoriranje ter vsem ostalim, ki jih nisem omenila in so mi na kakršenkoli način pomagali pri mojem magisteriju.

Posebna zahvala gre moji mami Mojci, ki me je vzgajala, mi puščala odprta vrata pri mojih odločitvah, me vedno brezpogojno podpirala, spodbujala in mi tako omogočila, da sem postala to, kar sem.

PRILOGE

Priloga A: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core I (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine (Qiagen JCSG Core I ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Ε	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Н	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core I za vseh 96 jamic mikrotitrne plošče (Qiagen JCSG Core I ..., 2014).

Številka	Sol	Pufer	Precipitant	Končni
jamice				pН
1		0,1 M CHES pH 9,5	20 % (m/V) PEG 8000	
2		0,1 M Bicin pH 8,5	20 % (m/V) PEG 6000	9,0
3	0,05 M litijev sulfat;	0,05 M Tris-HCl pH 8,5	30 % (m/V) PEG 400	
	0,05 M natrijev sulfat			
4	0,2 M amonijev	0,1 M Tris pH 8,5	50 % (V/V) MPD	
	dihidrogen fosfat			
5	0,2 M magnezijev klorid	0,1 M Tris pH 8,5	3,4 M 1,6 heksandiol	
6	0,05 M magnezijev	0,1 M Tris pH 8,5	40 % (V/V) etanol	
	klorid			
7		0,2 M tri-kalijev citrat	20 % (m/V) PEG 3350	
8		0,2 M tri-natrijev citrat	20 % (m/V) PEG 3350	
9		0,2 M tri-litijev citrat	20 % (m/V) PEG 3350	
10	0,2 M kalcijev acetat	0,1 M imidazol pH 8,0	20 % (m/V) PEG 1000	
11		0,2 M kalijev acetat	20 % (m/V) PEG 3350	
12		0,2 M magnezijev acetat	20 % (m/V) PEG 3350	
13	0,2 M natrijev klorid	0,1 M HEPES pH 7,5	20 % (m/V) PEG 3000	
14		0,1 M HEPES pH 7,5	20 % (m/V) PEG 8000	
15		0,1 M HEPES pH 7,5	10 % (m/V) PEG 8000	
16	0,19 M kalcijev klorid	0,095 M HEPES pH 7,5	26,6 % (V/V) PEG 400,	
			5 % (V/V) glicerol	
17		0,1M HEPES pH 7,5	20 % (m/V) PEG 4000;	
			10 % (V/V) izopropanol	
18	0,8 M di-natrijev	0,1M HEPES pH 7,5		
	hidrogen fosfat; 0,8 M			
	di-kalijev hidrogen fosfat			

Številka	Sol	Pufer	Precipitant	Končni
jamice				pН
19	0,2 M di-natrijev tartrat		20 % (m/V) PEG 3350	
20	0,2 M kalcijev acetat		20 % (m/V) PEG 3350	
	hidrat			
21	0,2 M kalijev format		20 % (m/V) PEG 3350	
22	0,2 M kalijev natrijev		20 % (m/V) PEG 3350	
	tartrat			
23	0,2 M natrijev format		20 % (m/V) PEG 3350	
24	0,2 M kalijev fluorid		20 % (m/V) PEG 3350	
25	0,2 M amonijev acetat		20 % (m/V) PEG 3350	
26	0,2 M litijev nitrat		20 % (m/V) PEG 3350	
27		0,1 M natrijev kakodilat pH	5 % (m/V) PEG 8000,	
		6,5	40 % (V/V) MPD	
28	0,2 M magnezijev klorid	0,1 M Tris pH 7,0	10 % (m/V) PEG 8000	
29	0,2 M kalcijev acetat	0,1 M Tris pH 7,0	20 % (m/V) PEG 3000	
30	0,2 M magnezijev klorid	0,1 M Tris pH 7,0	2,5 M natrijev klorid	
31		0,1 M Tris pH 7,0	20 % (m/V) PEG 2000	
			MME	
32	0,2 M natrijev acetat		20 % (m/V) PEG 3350	
33	0,2 M kalijev tiocianat		20 % (m/V) PEG 3350	
34		0,1 M HEPES pH 6,5	20 % (m/V) PEG 6000	7,0
35	0,2 M kalijev nitrat		20 % (m/V) PEG 3350	
36	0,2 M natrijev tiocianat		20 % (m/V) PEG 3350	
37	0,2 M natrijev iodid		20 % (m/V) PEG 3350	
38	0,2 M kalijev klorid		20 % (m/V) PEG 3350	
39	0,2 M natriejv klorid		20 % (m/V) PEG 3350	
40	0,2 M kalijev iodid		20 % (m/V) PEG 3350	
41	0,2 M litijev klorid		20 % (m/V) PEG 3350	
42	0,2 M magnezijev klorid	0,1 M natrijev kakodilat pH 6,5	50 % (V/V) PEG 200	
43	0,2 M di-amonijev tartrat		20 % (m/V) PEG 3350	
44	0,2 M natrijev sulfat		20 % (m/V) PEG 3350	
45	0,2 M amonijev format		20 % (m/V) PEG 3350	
46		0,1 M HEPES pH 7,5	10 % (m/V) PEG 6000;	
			5 % (V/V) MPD	
47		1,6 M natrijev citrat pH 6,5		
48	0,2 M magnezijev acetat	0,1 M natrijev kakodilat pH 6,5	20 % (m/V) PEG 8000	
49	0,2 M amonijev nitrat		20 % (m/V) PEG 3350	
50	0,2 M amonijev klorid		20 % (m/V) PEG 3350	
51	0,2 M natrijev klorid	0,1 M Na/K fosfat pH 6,2	10 % (m/V) PEG 8000	
52	0,2 M amonijev iodid		20 % (m/V) PEG 3350	
53	0,2 M amonijev fluorid		20 % (m/V) PEG 3350	
54	~	0,1 M MES pH 6,0	5 % (m/V) PEG 3000,	
		_	30 % (V/V) PEG 200	
55	0,2 M kalcijev acetat	0,1 M MES pH 6,0	20 % (m/V) PEG 8000	
56	0,2 M litijev sulfat	0,1 M MES pH 6,0	35 % (V/V) MPD	

jamicepH570,2 M amonijev sulfat20 % (m/V) PEG 3350580,1 M MES pH 5,040 % (V/V) MPD590,1 M MES pH 5,020 % (V/V) MPD600,1 M MES pH 5,020 % (m/V) PEG 6000610,1 M MES pH 5,020 % (m/V) PEG 6000620,2 M magnezijev sulfat20 % (m/V) PEG 3350630,2 M magnezijev format20 % (m/V) PEG 3350640,2 M magnezijev nitrat20 % (m/V) PEG 3350650,2 M magnezijev klorid20 % (m/V) PEG 3350
57 0,2 M amonijev sulfat 20 % (m/V) PEG 3350 58 0,1 M MES pH 5,0 40 % (V/V) MPD 6,0 59 0,1 M MES pH 5,0 20 % (V/V) MPD 6,0 60 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 61 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 20 % (m/V) PEG 3350 64 0,2 M magnezijev klorid 20 % (m/V) PEG 3350 20 % (m/V) PEG 3350
58 0,1 M MES pH 5,0 40 % (V/V) MPD 6,0 59 0,1 M MES pH 5,0 20 % (V/V) MPD 6,0 60 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 61 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 0,2 M magnezijev klorid 20 % (m/V) PEG 3350 20 % (m/V) PEG 3350 65
59 0,1 M MES pH 5,0 20 % (V/V) MPD 6,0 60 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 61 0,1 M MES pH 5,0 10 % (m/V) PEG 6000 6,0 62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 64 0,2 M magnezijev klorid 20 % (m/V) PEG 3350 65
60 0,1 M MES pH 5,0 20 % (m/V) PEG 6000 6,0 61 0,1 M MES pH 5,0 10 % (m/V) PEG 6000 6,0 62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 0,2 M magnezijev nitrat 20 % (m/V) PEG 3350 65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350
61 0,1 M MES pH 5,0 10 % (m/V) PEG 6000 6,0 62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 0,2 M magnezijev nitrat 20 % (m/V) PEG 3350 65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350 65 20 % (m/V) PEG 3350 65 20 % (m/V) PEG 3350 65 65 65 66 66 66 66 66 66 66 67
62 0,2 M magnezijev sulfat 20 % (m/V) PEG 3350 63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 0,2 M magnezijev nitrat 20 % (m/V) PEG 3350 65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350
63 0,2 M magnezijev format 20 % (m/V) PEG 3350 64 0,2 M magnezijev nitrat 20 % (m/V) PEG 3350 65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350
64 0,2 M magnezijev nitrat 20 % (m/V) PEG 3350 65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350
65 0,2 M magnezijev klorid 20 % (m/V) PEG 3350
66 0,095 M natrijev citrat pH 19 % (V/V) izopropanol;
5,6 19 % (m/V) PEG 4000;
5 % (V/V) glicerol
67 0,1 M natrijev citrat pH 5,6 20 % (V/V) izopropanol;
20 % (m/V) PEG 4000
68 0,1 M natrijev citrat pH 5,5 20 % (m/V) PEG 3000
69 0,2 M natrijev klorid 0,1 M fosfat-citrat pH 4,2 50 % (V/V) PEG 400
70 0,1 M fosfat-citrat pH 4,2 5 % (m/V) PEG 1000,
40 % etanol
710,2 M litijev sulfat0,1 M natrijev acetat pH 4,550 % (V/V) PEG 400
72 0,1 M fosfat-citrat pH 4,2 40 % (V/V) MPD
73 0,18 M tri-amonijev citrat 20 % (m/V) PEG 3350
74 0,1 M natrijev acetat pH 5,0 20 % (V/V) MPD
75 1,0 M litijev klorid 0,1 M citronska kislina pH 10 % (m/V) PEG 6000 5,0 5,0
76 0,1 M citronska kislina pH 20 % (m/V) PEG 6000 5,0
77 0 1 M citronska kislina 10 % (m/V) PEG 6000 5 0
$\begin{array}{c} 78 \\ \hline 78$
4,0
79 0,2 M kalijev dihidrogen 20 % (m/V) PEG 3350
fosfat
80 0,2 M amonijev 20 % (m/V) PEG 3350
81 0.2 M amonijev sulfat 0.1 M natrijev acetat pH 4.6 30 % (m/V) PEG 2000
MMF
82. 0 1 M natrijev acetat pH 4.6 8 % (m/V) PEG 4000
83 0.2 M amonijev sulfat 0.1 M natrijev acetat pH 4.6 25 % (m/V) PEG 4000
84 0.02 M kalcijev klorid 0.1 M natrijev acetat pH 4.6 30 % (V/V) MPD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
86 0 1 M natrijev acetat pH 4.5 20 % (m/V) PFG 3000
87 0.2 M natrijev dectat pri 4,5 20 % (m/V) PEG 3350
dihidrogen fosfat
88 0,05 M kalijev dihidrogen fosfat 20 % (m/V) PEG 8000
89 0.2 M natrijev klorid 0.1 M fosfat-citrat pH 4.2 10 % (m/V) PEG 3000
90 0.1 M fosfat-citrat pH 4.2 2.0 M amonijev sulfat

Številka	Sol	Pufer	Precipitant	Končni
jamice				рН
91	0,2 M litijev sulfat	0,1 M fosfat-citrat pH 4,2	10 % (m/V) PEG 3000	
92		0,1 M citronska kislina pH	20 % (V/V) MPD	4,0
		2,5		
93		0,1 M citronska kislina pH	0,8 M amonijev sulfat	4,0
		3,5		
94	1,0 M litijev klorid	0,1 M citronska kislina pH	20 % (m/V) PEG 6000	4,0
		4,0		
95		0,1 M citronska kislina pH	10 % (m/V) PEG 6000	4,0
		4,0		
96		0,1 M citronska kislina pH	5 % (m/V) PEG 6000	4,0
		4,0		

Priloga B: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core II (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine (Qiagen JCSG Core II ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Е	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Η	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core II za vseh 96 jamic mikrotitrne plošče (Qiagen JCSG Core II ..., 2014).

Številka	Sol	Pufer	Precipitant	Končni
jamice				pH
1	0,2 M natrijev klorid	0,1 M CAPS pH 10,5	20 % (m/V) PEG 8000	
2	0,2 M natrijev klorid	0,1 M CHES pH 9,5	1,26 M amonijev sulfat	
3	0,1 M natrijev citrat	0,1 M CHES pH 9,5		
4	0,2 M natrijev klorid	0,1 M CHES pH 9,5	10 % (m/V) PEG 8000	
5		0,1 M bicin pH 9,0	10 % (m/V) PEG 20000;	
			2 % (V/V) 1,4-dioksan	
6	0,1 M natrijev klorid	0,1 M bicin pH 9,0	20 % (m/V) PEG 550	
			MME	
7	1,0 M litijev klorid	0,1 M bicin pH 9,0	10 % (m/V) PEG 6000	9,0
8		0,1 M Tris pH 8,5	5 % (m/V) PEG 8000;	
			20 % (V/V) PEG 300;	
			10 % (V/V) glicerol	
9	0,01 M nikljev klorid	0,1 M Tris pH 8,5	20 % (m/V) PEG 2000	
			MME	
10		0,1 M Tris pH 8,5	20 % (V/V) etanol	
11		0,1 M Tris-HCl pH 8,5	2,0 M amonijev	
			dihidrogen fosfat	
12		0,1 M Tris-HCl pH 8,5	8 % (m/V) PEG 8000	
13		0,1 M Tris-HCl pH 8,5	2,0 M amonijev sulfat	
14	0,2 M litijev sulfat	0,1 M Tris pH 8,5	40 % (V/V) PEG 400	
15	0,2 M kalcijev acetat	0,1 M imidazol pH 8,0	10 % (m/V) PEG 8000	
16	0,2 M magnezijev klorid	0,1 M imidazol pH 8,0	35 % (V/V) MPD	
17	1,0 M litijev klorid	0,1 M Tris pH 8,5	20 % (m/V) PEG 6000	8,0
18		0,1 M Tris pH 8,5	20 % (m/V) PEG 6000	8,0
19	0,2 M litijev acetat		20 % (m/V) PEG 3350	
20	0,2 M magnezijev klorid	0,1 M imidazol pH 8,0	35 % (V/V) MPD	
21	0,2 M magnezijev klorid	0,1 M HEPES pH 7,5	15% (V/V) etanol	
22		0,1 M HEPES pH 7,5	70 % (V/V) MPD	

Številka	Sol	Pufer	Precipitant	Končni
jamice				pН
23		0,085 M natrijev HEPES pH	17 % (m/V) PEG 4000;	
		7,5	15 % (V/V) glicerol;	
			8,5 % (V/V)	
			izopropanol	
24	0,6 M natrijev	0,075 M natrijev HEPES pH	27 % (V/V) PEG 400;	
	dihidrogen fosfat; 0,6 M	7,5	10 % (V/V) glicerol	
	kalıjev dihidrogen tostat			
25	0,18 M magnezijev	0,09 ; natrijev HEPES 7,5	27 % (V/V) PEG 400;	
26	klorid		10% (V/V) glicerol	
26		0,1 M natrijev HEPES pH 7,5	2 % (V/V) PEG 400;	
07			2,0 M amonijev sulfat	
27	0,2 M magnezijev klorid	0,1 M natrijev HEPES pH 7,5	30 % (V/V) PEG 400	
28	0,2 M natrijev klorid	0,1 M Na/K fosfat pH 6,2	50 % (V/V) PEG 200	
29	0,2 M natrijev fluorid		20 % (m/V) PEG 3350	
30	0,2 M litijev sulfat	0,1 M Tris pH /,0	2,0 M amonijev sultat	
31	0,2 M kalcijev acetat	0,1 M natrijev kakodilat pH 6,5	40 % (V/V) PEG 300	
32	1000122 11 11	0,1 M Tris pH 7,0	20 % (m/V) PEG 1000	7.0
33	1,0 M litijev klorid	0,1 M HEPES pH 7,0	10 % (m/V) PEG 6000	7,0
34		0,1 M HEPES pH 6,5	10 % (m/V) PEG 6000	7,0
35	0,2 M natrijev klorid	0,1 M Na/K fosfat pH 6,2	40 % (V/V) PEG 400	
36		0,1 M natrijev citrat pH 5,5	50 % (V/V) PEG 200	
37		0,1 M Na/K fostat pH 6,2	25 % (V/V) 1,2-	
			propandiol; $10\% (V/V)$	
20	0.2 Martilian aitant		glicerol	
38	0,2 M hatijev mitrat	01 M Tris all 7.0	20 % (m/v) PEG 3350	
39	0,05 M litijev sulfat	0,1 M Tris pH 7,0	50 % (V/V) PEG 200	
40	0,2 M Kalijev sulfat		20 % (m/v) PEG 3350	
41	0,2 M magnezijev			
42	Tormat	0.1 M notriiov citrat pH 5.5	40.0% (V/V) DEC 600	
42	0.2 M magnazijav klorid	0,1 M natrijev curat pH 3,5	40 % (V/V) PEG 000	
43	0,2 Wi magnezijev kionu	6.5	20 % (III/V) FEG 1000	
44	0.2M magnezijav klorid	0,1 M patrijov korkodilat pH	10.% (m/V) DEC 2000	
44	0,2101 magnezijev kionu	6.5	10 % (III/V) FEO 5000	
45	0.2 M litijev sulfat	0.1 M natrijev karkodilat pH	30 % (V/V) PEG 400	
-15	0,2 Windjev Sundi	6.5	50 /0 (V/V) I LO 400	
47		0.1 M MES pH 6.5	12 % (m/V) PEG 20000	
48	0.2 M litijev sulfat		20 % (m/V) PEG 3350	
49	0.2 M natrijev klorid	0.1 M Na/K fosfat pH 6.2	20 % (m/V) PEG 1000	
50	s,= in hunger kiona	0.1 M MES pH 5.0	10% (V/V) MPD	60
51	1 0 M litijev klorid	0.1 M MES pH 6.0	20 % (m/V) PEG 6000	6.0
52	1 0 M litiev klorid	0.1 M MES pH 6.0	10 % (m/V) PEG 6000	6.0
52		0.1 M MES pH 5.0	5 % (m/V) PEG 6000	6.0
54	0.2 M cinkov acetat	0.1 M imidazol pH 8.0	25 % (W/V) = 12	0,0
57	0,2 m chikov acetat	o,i minuzoi pii 0,0	propandiol.	
			10% (V/V) glicerol	
			State (State) Briterior	

Številka	Sol	Pufer	Precipitant	Končni
Jamice	0.2 Mainhor agatat	0.1 Minuidagal mU 8.0	40.0% (V/V) DEC 600	рн
55	0,2 M clinkov acetat	0,1 M Initiazol pH 8,0	40%(V/V) PEG 000	
30	0,5 M amonijev sunat	0,1 M 1115 pH 7,0	50 % (V/V) PEG 000; 10 % (V/V) gliagral	
57	1.0 M litiion sulfst	0.1 M notrijov citrot pH 5.6	$10\%(\sqrt{2})$ gitcerof	
50	1,0 M Intijev sultat	0,1 M natrijev citrat pH 5,6	0,5 Wi anionijev sunat	
50	0,2 Wi amonijev acetat	0,1 W haujev chiat pH 5,0	30 % (III/V) FEG 4000	
39			24 % (III/V) PEG 1300;	
60	0.2 M natrijav klarid	0.1 M notrijov opotot 4.5	20% (V/V) gitceror	
61	0,2 Wi hau jev kionu	0,1 M natrijev acetat 4,5	40%(V/V) FEO 300 25.% (V/V) MDD: 10%	
01		0,1 Wi natrijev acetat 4,5	(V/V) glicerol	
62		0,1 M fosfat-citrat pH 4,2	40 % (V/V) PEG 300	
63		0,1 M natrijev acetat pH 4,5	5 % (m/V) PEG 1000;	
			50 % (V/V) etilenglikol	
64	0,1 M natrijev klorid	0,1 M natrijev acetat pH 4,5	30 % (V/V) PEG 200	
65		0,1 M natrijev acetat pH 4,5	40 % (V/V) 1,2-	
66		0.1 M patrijov acatat pH 4.5	40% (V/V) atilonglikal	
67		0,1 M natrijev acetat pH 4,5	40%(V/V) etheligitkoi	5.0
69		0,1 M hattigev acetat pH 3,0	$10\%(\sqrt{v})$ MPD 2.4 M emonilous sulfet	5,0
60		0.1 M citronska kislina pH 4.0	2,4 M amonijev sulfat	5,0
09		0,1 M citronska kislina pH 4,0	1,0 M amonijev sulfat	5,0
70	1.0 M litiiou klorid	0,1 M citronska kisilina pH 4,0	20% (m/V) DEC 6000	5,0
71		0.1 M fosfat citrat pH 4.2	20% (III/V) FEG 0000 5 % (m/V) PEG 2000:	3,0
12		0,1 W Iosiat-citiat pH 4,2	3% (III/V) FEG 3000, 25 % (V/V) 12	
			23 % ($\sqrt{}$) 1,2-	
			10 % (V/V) izopropanol	
73			2,0 M amonijev sulfat;	
			5 % (V/V) izopropanol	
74			2,0 M amonijev sulfat	
75	0,2 M magnezijev klorid	0,1M MES pH 5,5	40 % (V/V) PEG 400	
76	0,01 M kobaltov klorid	0,1 M natrijev acetat pH 4,6	1,0 M heksandiol	
77		0,08 M natrijev acetat pH 4,6	1,6 M amonijev sulfat;	
			20 % (V/V) glicerol	
78		0,07 M natrijev acetat pH 4,6	5,6 % (m/V) PEG 4000;	
			30 % (V/V) glicerol	
79	0,14 M kalcijev klorid	0,07 M natrijev acetat pH 4,6	30 % (V/V) glicerol;	
			14 % (V/V) izopropanol	
80	0,16 M amonijev sulfat	0,08 M natrijev acetat pH 4,6	20 % (m/V) PEG 4000;	
			20 % (V/V) glicerol	
81	0,018 M kalcijev klorid	0,09 M natrijev acetat pH 4,6	27 % (V/V) MPD; 10%	
			(V/V) glicerol	
82		0,1 M natrijev acetat pH 4,6	2,0 M amonijev sulfat	
83	0,2 M cinkov acetat	0,1 M natrijev acetat pH 4,5	10 % (m/V) PEG 3000	
84	0,2 M amonijev sulfat	0,1 M fosfat-citrat pH 4,2	20 % (V/V) PEG 300;	
			10 % glicerol	
85	0,2 M kalcijev acetat	0,1 M natrijev acetat pH 4,5	30 % (V/V) PEG 400	

nadaije+ai	je progreamee			
Številka	Sol	Pufer	Precipitant	Končni
jamice				pН
86	0,2 M litijev sulfat	0,1 M natrijev acetat pH 4,5	30 % (m/V) PEG 8000	
87			25 % (V/V) etilenglikol	
88	0,2M litijev sulfat	0,1 M fosfat-citrat pH 4,2	10 % (V/V) izopropanol	
89	0,2 M natrijev klorid	0,1 M fosfat-citrat pH 4,2	20 % (m/V) PEG 8000	
90			10 % (m/V) PEG 1000;	
			10 % (m/V) PEG 8000	
91	0,17 M amonijev sulfat		25,5 % (m/V) PEG	
			4000;	
			15 % (V/V) glicerol	
92			30 % (m/V) PEG 1500	
93	0,4 M amonijev			
	dihidrogen fosfat			
94			35 % (V/V) 1,4-dioksan	
95		0,1 M citronska kislina pH 2,5	10 % (V/V) MPD	4,0
96		0,1 M citronska kislina pH 2,5	20 % (m/V) PEG 6000	4,0

Priloga C: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core III (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine (Qiagen JCSG Core III ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Ε	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Η	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core III za vseh 96 jamic mikrotitrne plošče (Qiagen JCSG Core III ..., 2014).

Številka	Sol	Pufer	Precipitant
jamice			
1		0,1 M CAPS pH 10,5	30 % PEG 400
2		0,1 M CHES pH 9,5	40 % (V/V) PEG 600
3		0,1 M CHES pH 9,5	50 % (V/V) PEG 200
4		0,1 M CHES pH 9,5	30 % PEG 3000
5	0,2 M natrijev klorid	0,1 M CHES pH 9,5	50 % PEG 400
6		0,2 M di-kalijev hidrogen fosfat	20 % (m/V) PEG 3350
7		0,2 M di-natrijev hidrogen	20 % (m/V) PEG 3350
		fosfat dihidrat	
8		0,1 M bicin pH 9,0	40 % (+-)-2-metil-2,4-pentandiol
9		0,1 M bicin pH 9,0	5 % PEG 6000
10		0,1 M CAPS pH 10,5	30 % (V/V) PEG 200;
			0,2 M amonijev sulfat
11		0,1 M Tris pH 8,5	20 % PEG 8000
12		0,1 M Tris pH 8,5	1,0 M amonijev dihidrogen fosfat
13	0,2 M magnezijev klorid	0,1 M Tris pH 8,5	20 % PEG 8000
14	0,2 M litijev sulfat	0,1 M Tris pH 8,5	1,26 M amonijev sulfat
15	1,0 M litijev sulfat, 0,01 M	0,1 M Tris pH 8,5	
	nikljev klorid		
16	1,6 M amonijev dihidrogen	0,08 M Tris pH 8,5	20 % glicerol
	fosfat		
17	0,2 M natrijev acetat	0,1 M Tris pH 8,5	30 % PEG 4000
18	0,1 M imidazol pH 8,0	1,0 M natrijev citrat	
19	0,2 M magnezijev klorid	0,1 M imidazol pH 8,0	15 % etanol
20	0,2 M litijev sulfat	0,1 M imidazol pH 8,0	10 % PEG 3000
21		0,1 M Tris pH 8,0	40 % (+-)-2-metil-2,4-pentandiol
22	2,4 M amonijev sulfat	0,1 M Tris pH 8,0	
23		0,2 M di-amonijev hidrogen	20 % (m/V) PEG 3350
		fosfat	

Številka	Sol	Pufer Precipitant			
jamice					
24	0,2 M natrijev klorid	0,1 M HEPES pH 7,5	30 % PEG 400		
25	0,05 M kalcijev acetat	0,1 M imidazol pH 8,0	35 % 2-etoksietanol		
26	0,2 M tri-natrijev citrat	0,1 M HEPES pH 7,5	10 % izopropanol		
27	0,1 M natrijev klorid	0,1 M HEPES pH 7,5	1,6 M amonijev sulfat		
28	0,18 M magnezijev klorid	0,09 M HEPES pH 7,5	10 % glicerol, 27 % izopropanol		
29	1,4 M tri-natrijev citrat	0,1 M HEPES pH 7,5			
30	0,2 M kalcijev klorid	0,1 M HEPES pH 7,5	28 % PEG 400		
31	0,2 M magnezijev klorid	0,1 M HEPES pH 7,5	30 % izopropanol		
32		0,1 M imidazol pH 8,0	40 % (V/V) PEG 400		
33	10% (V/V) glicerol	0,1 M HEPES pH 7,5	5 % (m/V) PEG 3000;		
			30 % (V/V) PEG 400		
34	1,0 M natrijev citrat, 0,2 M natrijev klorid	0,1 M Tris pH 7,0			
35		0.1 M Tris pH 7.0	15 % etanol		
36	0.2 M natrijev klorid	0.1 M Tris pH 7.0	35 % (+-)-2-metil-2.4-pentandiol		
37	1.0 M kalijev/natrijev tartrat.	0.1 M imidzol pH 8.0			
	0.2 M natrijev klorid	·,- · F ·,·			
38		0.1 M HEPES pH 7.0	40 % (+-)-2-metil-2.4-pentandiol		
39		0,1 M HEPES pH 7,0	20 % (+-)-2-metil-2,4-pentandiol		
40		1,0 M imidazol pH 7,0			
41		0,4 M kalijev/natrijev tartrat			
42		0,1 M HEPES pH 7,0	2,4 M amonijev sulfat		
43	1,0 M litijev klorid	0,1 M HEPES pH 7,0	20 % PEG 6000		
44		0,1 M HEPES pH 7,0	5 % PEG 6000		
45		0,1 M kakodilat pH 6,5	35 % 2-etoksietanol		
46		0,1 M Tris pH 7,0	50 % (V/V) PEG 200		
47	0,2 M natrijev klorid	0,1 M natrijev/kalijev fosfat pH	35 % (v/) 2-etoksietanol		
10		6,2			
48	1,0 M natrijev citrat	0,1 M kakodilat pH 6,5			
49		0,1 M kakodilat pH 6,5	1,26 M amonijev sulfat		
50	0,01 M kobaltov klorid	0,1 M MES pH 6,5	1,8 M amonijev sulfat		
51		0,1 M MES pH 6,5	1,6 M amonijev sulfat, 10 % dioksan		
52	1,6 M magnezijev sulfat	0,1 M MES pH 6,5			
53	0,16 M kalcijev acetat	0,08 M kakodilat pH 6,5	14,4 % PEG 8000, 20% glicerol		
54	0,2 M magnezijev acetat	0,1 M natrijev kakodilat pH 6,5	30 % (+-)-2-metil-2,4-pentandiol		
55	0,16 M magnezijev acetat	0,08 M natrijev kakodilat pH	16 % PEG 8000, 20% glicerol		
56	0,2 M kalcijev acetat	0,1 M kakodilat pH 6,5	18 % PEG 8000		
57	0,2 M natrijev acetat	0,1 M natrijev kakodilat pH 6,5	30 % PEG 8000		
58	1,0 M natrijev acetat	0,1 M imidazol pH 6,5			
59	0,2 M magnezijev acetat	0,1 M natrijev kakodilat pH 6,5	30 % (+-)-2-metil-2,4-pentandiol		
60	1,4 M natrijev acetat	0,1 M kakodilat pH 6,5	-		
61		0,1 M MES pH 6,0	40 % PEG 400, 5% (m/V) PEG 3000		
62		0,1 M citrat pH 5,5	35 % 2-etoksietanol		

Številka	Sol	Pufer	Precipitant
jamice			
63		0,1 M natrij/kalijev fosfat pH 6,2	35 % (+-)-2-metil-2,4-pentandiol
64	2,5 M natrijev klorid	0,1 M natrij/kalijev fosfat pH 6,2	
65	0,2 M kalcijev acetat	0,1 M MES pH 6,0	10 % izopropanol
66		0,1 M MES pH 6,0	10 % PEG 8000
67		0,1 M MES pH 6,0	2,4 M amonijev sulfat
68		0,1 M MES pH 6,0	2,4 M amonijev sulfat
69		0,1 M MES pH 6,0	0,8 M amonijev sulfat
70	0,1 M citrat pH 5,6	0,2 M kalijev/natrijev tartrat	2,0 M amonijev sulfat
71	0,17 M amonijev acetat	0,085 M natrijev citrat pH 5,6	25,5 % PEG 4000, 15 % glicerol
72	1,0 M amonijev dihidrogen fosfat	0,1 M citrat pH 5,6	
73		0,1 M citrat pH 5,5	2,0 M amonijev sulfat
74		0,1 M acetat pH 4,5	40 % (V/V) PEG 400
75		0,1 M Tris pH 7,0	40 % (V/V) PEG 300, 5 % (m/V)
			PEG 1000
76		0,1 M fosfat-citrat pH 4,2	40 % PEG 600
77	0,2 M kalcijev klorid dihidrat		20 % (m/V) PEG 3350
78		0,1 M natrijev acetat trihidrat pH 5.0	40 % (+-)-2-metil-2,4-pentandiol
79	1.0 M litijev klorid	0,1 M citronska kislina pH 5,0	
80	· J	0,1 M citronska kislina pH 5,0	30 % PEG 6000
81		0.04 M KH2PO4	16 % PEG 8000, 20% glicerol
82	0,1 M kadmijev klorid	0,1 M natrijev acetat pH 4,6	30 % PEG 400
83	0,2 M natrijev klorid	0,1 M natrijev acetat pH 4,6	30 % (+-)-2-metil-2,4-pentandiol
84	2,0 M natrijev klorid	0,1 M natrijev acetat pH 4,6	
85	2,0 M natrijev format	0,1 M natrijev acetat pH 4,6	
86	0,2 M kalcijev klorid	0,1 M acetat pH 4,6	20 % izopropanol
87	2,5 M natrijev klorid, 0,2 M litijev sulfat	0,1 M acetat pH 4,5	
88		0,1 M acetat pH 4,5	20 % butandiol
89	0,2 M natrijev klorid	0,1 M acetat pH 4,5	1,26 M amonijev sulfat
90		0,26 M amonijev dihidrogen fosfat	35 % glicerol
91		0,1 M citronska kislina pH 4,0	40 % (+-)-2-metil-2,4-pentandiol
92		0,1 M citronska kislina pH 4,0	2,4 M amonijev sulfat
93		0,1 M citronska kislina pH 4,0	1,6 M amonijev sulfat
94	2,0 M natrijev klorid		10 % PEG 6000
95			30 % PEG 4000, 0,2 M amonijev sulfat
96			30 % PEG 8000, 0,2 M amonijev sulfat

Priloga D: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core IV (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine (Qiagen JCSG Core IV ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Е	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Η	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo JCSG Core IV za vseh 96 jamic mikrotitrne plošče (Qiagen JCSG Core IV ..., 2014).

Številka	Sol	Pufer	Precipitant
jamice			
1	0,2 M litijev sulfat	0,1 M CAPS pH 10,5	2,0 M amonijev sulfat
2	1,2 M natrijev dihidrogen	0,1 M CAPS pH 10,5	
	fosfat/0,8 M dikalijev hidrogen		
	fosfat, 0,2 M litijev sulfat		
3		0,1 M CAPS pH 10,5	40 % (V/V) MPD
4		0,1 M CHES pH 9,5	10 % PEG 3000
5	1,0 M natrijev/kalijev tartrat,	0,1 M CHES pH 9,5	
	0,2 M litijev sulfat		
6		0,1 M CHES pH 9,5	30 % PEG 400
7		0,1 M CHES pH 9,5	15 % etanol
8	0,2 M natrijev citrat	0,1 M CHES pH 9,5	20 % PEG 300
9		0,1 M CHES pH 9,5	40 % (V/V) MPD
10		0,1 M bicin pH 9,0	1,6 M amonijev sulfat
11		0,1 M bicin pH 9,0	0,8 M amonijev sulfat
12		0,1 M bicin pH 9,0	2,4 M amonijev sulfat
13		0,1 M bicin pH 9,0	10 % PEG 6000
14		0,1 M bicin pH 9,0	3,2 M amonijev sulfat
15		0,1 M bicin pH 9,0	30 % PEG 6000
16		0,1 M bicin pH 9,0	65 % MPD
17	2,0 M magnezijev klorid	0,1 M bicin pH 9,0	
18		0,1 M Tris pH 8,5	10 % 2-propanol
19	0,2 M magnezijev klorid	0,1 M Tris pH 8,5	50 % etilen glikol
20	0,2 M magnezijev klorid	0,1 M Tris pH 8,5	25 % (V/V) 1,2-propandiol, 10 %
			(V/V) glicerol
21	0,2 M magnezijev klorid	0,1 M Tris HCl, pH 8,5	30 % PEG 4000
22	0,2 M natrijev citrat	0,1 M Tris HCl, pH 8,5	30 % PEG 400
23	0,2 M litijev sulfat	0,1 M Tris HCl, pH 8,5	30 % PEG 4000
24	0,2 M amonijev acetat	0,1 M Tris HCl, pH 8,5	30 % izopropanol

Številka	Sol	Pufer	Precipitant			
jamice						
25		0,1 M Tris, pH 8,5	1,5 M amonijev sulfat, 12 % glicerol			
26	0,2 M natrijev citrat	0,1 M Tris HCl, pH 8,5	30 % PEG 400			
27	0,17 M natrijev acetat	0,085 M Tris HCl, pH 8,5	25,5 % PEG 4000, 15 % glicerol			
28		0,1 M imidazol pH 8,0	10 % izopropanol			
29	2,5 M natrijev klorid, 0,2 M	0,1 M imidazol pH 8,0				
	cinkov acetat					
30	2,5 M natrijev klorid	0,1 M imidazol pH 8,0				
31		0,1 M imidazol pH 8,0	10 % PEG 8000			
32	1,0 M amonijev hidrogen fosfat	0,1 M imidazol pH 8,0	0,2 M cinkov acetat			
33		0,1 M Tris pH 8,0	1,6 M amonijev sulfat			
34		0,1 M Tris pH 8,0	5 % PEG 6000			
35		0,1 M Tris pH 8,0	65 % MPD			
36		0,1 M Tris pH 8,0	10 % PEG 6000			
37		0,1 M Tris pH 8,0	2,4 M amonijev sulfat			
38		0,1 M HEPES pH 7,5	1,26 M amonijev sulfat			
39	0,2 M natrijev klorid	0,1 M HEPES pH 7,5	35 % MPD			
40		0,1 M HEPES pH 7,5	50 % (V/V) PEG 200			
41	1,5 M litijev sulfat	0,1 M HEPES pH 7,5				
42	4,3 M natrijev klorid	0,1 M HEPES pH 7,5				
43	0,2 M natrijev citrat	0,1 M HEPES pH 7,5	30 % MPD			
44		0,09 M HEPES pH 7,5	10 % glicerol			
45	1,26 M tri-natrijev citrat	0,09 M HEPES pH 7,5	10 % glicerol			
46		0,085 M HEPES pH 7,5	1,7 % PEG 400/1,7 M amonijev			
			sulfat, 15 % glicerol			
47	0,05 M litijev sulfat	0,1 M HEPES pH 7,5	30 % PEG 600, 10 % glicerol			
48		0,1 M HEPES pH 7,5	30 % (V/V) 1,2-propandiol, 20 % (V/V) PEG 400			
49	0,2 M amonijev sulfat	0,1 M Tris pH 7,0	25 % (V/V) 1,2-propandiol, 10 %			
			(V/V) glicerol			
50		0,1 M HEPES pH 7,5	5 % (m/V) PEG 3000, 40 % etilenglikol			
51		0,1 M Tris pH 7,0	0,2 M amonijev sulfat, 40 %			
			MPD			
52			4,0 M natijev format			
53			3,6 M natrijev format, 10 % glicerol			
54	0,2 M kalcijev acetat	0,1 M HEPES pH 7,5	40 % (V/V) PEG 400			
55	0,2 M natrijev klorid	0,1 M Tris pH 7,0	30 % PEG 3000			
56	1,0 M natrijev/kalijev tartrat,	0,1 M Tris pH 7,0				
	0,2 M litijev sulfat	-				
57	0,2 M kalcijev acetat	0,1 M kakodilat pH 6,5	40 % PEG 600			
58		0,1 M HEPES pH 7,0	0,8 M amonijev sulfat			
59		0,1 M HEPES pH 7,0	2,4 M amonijev sulfat			
60		0,1 M HEPES pH 7,0	30 % PEG 6000			
61	1,0 M litijev klorid	0,1 M HEPES pH 7,0				

Številka	Sol	Pufer	Precipitant		
jamice					
62	1 M natrijev klorid	0,1 M kakodilat pH 6,5	30 % (V/V) PEG 600, 10 %		
			(V/V) glicerol		
63	0,2 M cinkov acetat	0,1 M kakodilat pH 6,5	10 % izopropanol		
64	0,2 M kalcijev acetat	0,1 M kakodilat pH 6,5	15 % (V/V) glicerol		
65		0,1 M HEPES pH 7,0	30 % (V/V) Jeffamine M-600 pH		
			7,0		
66	0,1 M natrijev dihidrogen	0,1 M MES pH 6,5	2,0 M natrijev klorid		
	fosfat/ 0,1 M kalijev				
	dihidrogen fosfat				
67	0,16 M cinkov acetat	0,108 M natrijev kakodilat	14,4 % PEG 8000, 20 % glicerol		
		рН 6,5			
68		0,1 M citrat pH 5,5	30 % 1,2-propandiol, 20 % MPD		
69	0,2 M cinkov acetat dihidrat		20 % (m/V) PEG 3350		
70		0,1 M citarat pH 5,5	5 % (m/V) PEG 1000, 35 % 2-		
			propanol		
71		0,1 M MES pH 6,0	10 % glicerol, 30 % PEG 600, 5		
			% (m/V) PEG 1000		
72		0,1 M citrat pH 5,5	40 % (V/V) MPD		
73	0,2 M cinkov acetat	0,1 M imidazol pH 8,0	35 % (V/V) 2-propanol		
74	1,0 M natrijev/kalijev tartrat	0,1 M MES pH 6,0			
75	0,2 M litijev sulfat	0,1 M MES pH 6,0	20 % butandiol		
76	0,2 M cinkov acetat	0,1 M MES pH 6,0	15 % etanol		
77		0,1 M MES pH 6,0	1,6 M amonijev sulfat		
78		0,1 M MES pH 6,0	30 % PEG 6000		
79	0,2 M cinkov acetat	0,1 M imidazol pH 8,0	40 % (V/V) PEG 300		
80	0,2 M amonijev acetat	0,1 M citrat pH 5,6	30 % MPD		
81	0,01 M FeCl2	0,1 M citrat pH 5,6	10 % Jeffamine M-600		
82	0,7 M amonijev dihidrogen	0,07 M citrat pH 5,6	30 % glicerol		
	fosfat				
83	0,2 M litijev sulfat	0,1 M citrat pH 5,5	15 % etanol		
84	0,05 M kalcijev acetat	0,1 M acetat pH 4,5	40 % 1,2-propandiol		
85		0,1 M acetat pH 4,5	35 % (V/V) 2-propanol		
86	0,2 M amonijev acetat	0,1 M acetat pH 4,6	30 % PEG 4000		
87	0,17 M amonijev acetat	0,085 M acetat pH 4,6	25,5 % PEG 4000, 15 % glicerol		
88	0,2 M cinkov acetat	0,1 M acetat pH 4,5	20 % PEG 1000		
89	1,0 M amonijev hidrogen fosfat	0,1 M acetat pH 4,5			
90	0,8 M natrijev dihidrogen	0,1 M acetat pH 4,5			
	fosfat/1,2 M dikalijev hidrogen				
	fosfat				
91	0,2 M amonijev sulfat	0,1 M fosfat-citrat pH 4,2	40 % (V/V) etilenglikol		
92	1,5 M natrijev klorid		10 % etanol		
93	1,5 M amonijev sulfat		25 % glicerol		
94	1,6 M natrijev dihidrogen	0,1 M fosfat-citrat pH 4,2			
	fosfat/0,4 M dikalijev hidrogen	_			
	fosfat				

Številka jamice	Sol	Pufer	Precipitant
95		0,1 M citronska kislina pH 4,0	30 % PEG 6000
96	1,0 M litijev klorid	0,1 M citronska kislina pH 4,0	30 % PEG 6000

Priloga E: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo PACT (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine (Qiagen PACT ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Е	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Η	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo PACT za vseh 96 jamic mikrotitrne plošče (Qiagen PACT ..., 2014).

Številka	Sol	Pufer	Precipitant
jamice			
1		0,1 M SPG pufer pH 4	25 % (m/V) PEG 1500
2		0,1 M SPG pufer pH 5	25 % (m/V) PEG 1500
3		0,1 M SPG pufer pH 6	25 % (m/V) PEG 1500
4		0,1 M SPG pufer pH 7	25 % (m/V) PEG 1500
5		0,1 M SPG pufer pH 8	25 % (m/V) PEG 1500
6		0,1 M SPG pufer pH 9	25 % (m/V) PEG 1500
7	0,2 M natrijev klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
8	0,2 M amonijev klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
9	0,2 M litijev klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
10	0,2 M magnezijev klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
11	0,2 M kalcijev klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
12	0,01 M cinkov klorid	0,1 M natrijev acetat pH 5	20 % (m/V) PEG 6000
13		0,1 M MIB pufer pH 4	25 % (m/V) PEG 1500
14		0,1 M MIB pufer pH 5	25 % (m/V) PEG 1500
15		0,1 M MIB pufer pH 6	25 % (m/V) PEG 1500
16		0,1 M MIB pufer pH 7	25 % (m/V) PEG 1500
17		0,1 M MIB pufer pH 8	25 % (m/V) PEG 1500
18		0,1 M MIB pufer pH 9	25 % (m/V) PEG 1500
19	0,2 M natrijev klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
20	0,2 M amonijev klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
21	0,2 M litijev klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
22	0,2 M magnezijev klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
23	0,2 M kalcijev klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
24	0,01 M cinkov klorid	0,1 M MES pH 6	20 % (m/V) PEG 6000
25		0,1 M PCB pufer pH 4	25 % (m/V) PEG 1500
26		0,1 M PCB pufer pH 5	25 % (m/V) PEG 1500
27		0,1 M PCB pufer pH 6	25 % (m/V) PEG 1500

Številka	Sol	Pufer	Precipitant
jamice			
28		0,1 M PCB pufer pH 7	25 % (m/V) PEG 1500
29		0,1 M PCB pufer pH 8	25 % (m/V) PEG 1500
30		0,1 M PCB pufer pH 9	25 % (m/V) PEG 1500
31	0,2 M natrijev klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
32	0,2 M amonijev klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
33	0,2 M litijev klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
34	0,2 M magnezijev klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
35	0,2 M kalcijev klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
36	0,01 M cinkov klorid	0,1 M HEPES pH 7	20 % (m/V) PEG 6000
37		0,1 M MMT pufer pH 4	25 % (m/V) PEG 1500
38		0,1 M MMT pufer pH 5	25 % (m/V) PEG 1500
39		0,1 M MMT pufer pH 6	25 % (m/V) PEG 1500
40		0,1 M MMT pufer pH 7	25 % (m/V) PEG 1500
41		0,1 M MMT pufer pH 8	25 % (m/V) PEG 1500
42		0,1 M MMT pufer pH 9	25 % (m/V) PEG 1500
43	0,2 M natrijev klorid	0,1 M Tris pH 8	20 % (m/V) PEG 6000
44	0,2 M amonijev klorid	0,1 M Tris pH 8	20 % (m/V) PEG 6000
45	0,2 M litijev klorid	0,1 M Tris pH 8	20 % (m/V) PEG 6000
46	0,2 M magnezijev klorid	0,1 M Tris pH 8	20 % (m/V) PEG 6000
47	0,2 M kalcijev klorid	0,1 M Tris pH 8	20 % (m/V) PEG 6000
48		0,1 M Tris pH 8	20 % (m/V) PEG 6000
49	0,2 M natrijev fluorid		20 % (m/V) PEG 3350
50	0,2 M natrijev bromid		20 % (m/V) PEG 3350
51	0,2 M natrijev iodid		20 % (m/V) PEG 3350
52	0,2 M kalijev tiocianat		20 % (m/V) PEG 3350
53	0,2 M natrijev nitrat		20 % (m/V) PEG 3350
54	0,2 M natrijev format		20 % (m/V) PEG 3350
55	0,2 M natrijev acetat		20 % (m/V) PEG 3350
56	0,2 M natrijev sulfat		20 % (m/V) PEG 3350
57	0,2 M kalijev/natrijev tartrat		20 % (m/V) PEG 3350
58	0,2 M kalijev/natrijev fosfat		20 % (m/V) PEG 3350
59	0,2 M natrijev citrat		20 % (m/V) PEG 3350
60	0,2 M natrijev malonat		20 % (m/V) PEG 3350
61	0,2 M natrijev fluorid	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
62	0,2 M natrijev bromid	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
63	0,2 M natrijev iodid	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
64	0,2 M kalijev tiocianat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
65	0,2 M natrijev nitrat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
66	0,2 M natrijev format	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
67	0,2 M natrijev acetat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
68	0,2 M natrijev sulfat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
69	0,2 M kalijev/natrijev tartrat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
70	0,2 M kalijev/natrijev fosfat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
71	0,2 M natrijev citrat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
72	0,2 M natrijev malonat	0,1 M Bis Tris propan pH 6,5	20 % (m/V) PEG 3350
73	0,2 M natrijev fluorid	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350

Številka	Sol	Pufer	Precipitant
jamice			
74	0,2 M natrijev bromid	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
75	0,2 M natrijev iodid	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
76	0,2 M kalijev tiocianat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
77	0,2 M natrijev nitrat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
78	0,2 M natrijev format	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
79	0,2 M natrijev acetat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
80	0,2 M natrijev sulfat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
81	0,2 M kalijev/natrijev tartrat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
82	0,2 M kalijev/natrijev fosfat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
83	0,2 M natrijev citrat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
84	0,2 M natrijev malonat	0,1 M Bis Tris propan pH 7,5	20 % (m/V) PEG 3350
85	0,2 M natrijev fluorid	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
86	0,2 M natrijev bromid	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
87	0,2 M natrijev iodid	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
88	0,2 M kalijev tiocianat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
89	0,2 M natrijev nitrat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
90	0,2 M natrijev format	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
91	0,2 M natrijev acetat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
92	0,2 M natrijev sulfat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
93	0,2 M kalijev/natrijev tartrat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
94	0,2 M kalijev/natrijev fosfat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
95	0,2 M natrijev citrat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350
96	0,2 M natrijev malonat	0,1 M Bis Tris propan pH 8,5	20 % (m/V) PEG 3350

Priloga F: Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo Cryos (QIAGEN, Nemčija) za vseh 96 jamic mikrotitrne plošče.

Mikrotitrna plošča s 96 jamicami. Jamice so oštevilčene. V naslednji preglednici je pri posamezni številki jamice definirano kakšna je sestava kristalizacijske raztopine(Qiagen Cryos ..., 2014).

Jamice	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	2	3	4	5	6	7	8	9	10	11	12
В	13	14	15	16	17	18	19	20	21	22	23	24
С	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
Ε	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
Η	85	86	87	88	89	90	91	92	93	94	95	96

Sestava kristalizacijskih raztopin komercialno dostopnega seta za kristalizacijo Cryos za vseh 96 jamic mikrotitrne plošče (Qiagen Cryos ..., 2014).

Številka	Sol	Pufer	Precipitant	Krioprotektant
jamice		0.007.16		
1	0,0085 M kobaltov	0,085 M natrijev acetat	0,85 M 1,6-heksandiol	15 % (V/V) glicerol
	klorid	pH 4,6		
2		0,085 M tri-natrijev	2,125 M 1,6-heksandiol	15 % (V/V) glicerol
		citrat pH 5,6		
3	0,17 M magnezijev	0,085 M Tris pH 8,5	2,89 M 1,6-heksandiol	15 % (V/V) glicerol
	klorid			
4			4,25 % (V/V)	15 % (V/V) glicerol
			izopropanol, 1,7 M	
			amonijev sulfat	
5		0,085 M HEPES	8,5 % (V/V)	15 % (V/V) glicerol
		natrijeva sol pH 7,5	izopropanol, 17 % (m/V)	
			PEG 4000	
6	0,14 M kalcijev klorid	0,07 M natrijev acetat	14 % (V/V) izopropanol	30 % (V/V) glicerol
	-	рН 4,6		
7		0,095 M tri-natrijev	19 % (V/V) izopropanol,	5 % (V/V) glicerol
		citrat pH 5,6	19 % (m/V) PEG 4000	
8	0,14 M tri-natrijev	0,07 M HEPES	14 % (V/V) izopropanol	30 % (V/V) glicerol
	citrat	natrijeva sol pH 7,5		
9	0,14 M tri-natrijev	0,07 M natrijev	21 % (V/V) izopropanol	30 % (V/V) glicerol
	citrat	kakodilat pH 6,5		
10	0,18 M magnezijev	0,09 M HEPES	27 % (V/V) izopropanol	10 % (V/V) glicerol
	klorid	natrijeva sol pH 7,5		
11	0,16 M amonijev acetat	0,08 M Tris HCl pH	24 % (V/V) izopropanol	20 % (V/V) glicerol
		8,5		
12			8,5 % (V/V) etanol,	15 % (V/V) glicerol
			1,275 M natrijev klorid	
13		0,085 M Tris pH 8,5	17 % (V/V) etanol	15 % (V/V) glicerol
14			21,25 % (V/V)	15 % (V/V) glicerol
			etilenglikol	
15	0,018 M kalcijev klorid	0,09 M natrijev acetat	27 % (V/V) MPD	10 % (V/V) glicerol
		рН 4,6		

nadaljevanje j	oreglednice
J	8

Številka jamice	Sol	Pufer	Precipitant	Krioprotektant
16	0,17 M natrijev klorid	0,085 M natrijev acetat pH 4.6	25,5 % (V/V) MPD	15 % (V/V) glicerol
17	0,18 M magnezijev acetat	0,09 M tri-natrijev citrat pH 5,6	27 % (V/V) MPD	10 % (V/V) glicerol
18	0,18 M magnezijev acetat	0,09 M natrijev kakodilat pH 6,5	27 % (V/V) MPD	10 % (V/V) glicerol
19	0,18 M tri-natrijev citrat	0,09 M HEPES natrijeva sol pH 7,5	27 % (V/V) MPD	10 % (V/V) glicerol
20	0,425 M amonijev sulfat	0,085 M HEPES pH 7,5	25,5 % (V/V) MPD	15 % (V/V) glicerol
21	0,17 M amonijev fosfat	0,085 M Tris pH 8,5	42,5 % (V/V) MPD	15 % (V/V) glicerol
22		0,085 M HEPES pH 7,5	59,5 % (V/V) MPD	15 % (V/V) glicerol
23		0,085 M Tris pH 8,5	21,25 % (V/V) tert- butanol	15 % (V/V) glicerol
24		0,085 M tri-natrijev citrat pH 5,6	29,75 % (V/V) tert- butanol	15 % (V/V) glicerol
25			0,26 M amonijev fosfat	35 % (V/V) glicerol
26		0,07 M tri-natrijev citrat pH 5,6	0,7 M amonijev fosfat	30 % (V/V) glicerol
27		0,08 M Tris HCl pH 8,5	1,6 M amonijev fosfat	20 % (V/V) glicerol
28		0,085 M HEPES pH 7,5	1,7 M amonijev format	15 % (V/V) glicerol
29		0,08 M natrijev acetat pH 4,6	1,6 M amonijev sulfat	20 % (V/V) glicerol
30		0,075 M Tris HCl pH 8,5	1,5 M amonijev sulfat	25 % (V/V) glicerol
31		· · ·	1,5 M amonijev sulfat	25 % (V/V) glicerol
32	0,085 M natrijev klorid	0,085 M HEPES pH 7,5	1,36 M amonijev sulfat	15 % (V/V) glicerol
33	0,0085 M kobaltov klorid	0,085 M MES pH 6,5	1,53 M amonijev sulfat	15 % (V/V) glicerol
34	0,17 M K/Na tartrat	0,085 M tri-natrijev citrat pH 5,6	1,7 M amonijev sulfat	15 % (V/V) glicerol
35			0,85 M imidazol pH 7,0	15 % (V/V) glicerol
36			0,26 M K/Na tartrat	35 % (V/V) glicerol
37		0,065 M HEPES natrijeva sol pH 7,5	0,52 M K/Na tartrat	35 % (V/V) glicerol
38		0,07 M imidazol pH 6,5	0,7 M natrijev acetat	30 % (V/V) glicerol
39	0,0425 M kadmijev sulfat	0,085 M HEPES pH 7,5	0,85 M natrijev acetat	15 % (V/V) glicerol
40		0,07 M natrijev kakodilat pH 6,5	0,98 M natrijev acetat	30 % (V/V) glicerol
41		0,085 M natrijev acetat pH 4,6	1,7 M natrijev klorid	15 % (V/V) glicerol
42	0,085 M natrijev fosfat, 0.085 M kalijev fosfat	0,085 M MES pH 6,5	1,7 M natrijev klorid	15 % (V/V) glicerol
43	.,	0,085 M HEPES pH 7,5	3,655 M natrijev klorid	15 % (V/V) glicerol

Rezelj S. Opredelitev zgradbe in delovanja mutanta listeriolizina O Y406A. Mag. delo. Ljubljana, Univ. v Ljubljani, Biotehniška fakulteta, Študij biotehnologije, 2014

Številka Pufer Precipitant Krioprotektant Sol jamice 0.09 M HEPS natrijeva 1,26 M tri-natrijev citrat 10 % (V/V) glicerol 44 sol pH 7,5 45 1,36 M tri-natrijev citrat 15 % (V/V) glicerol pH 6,5 46 0,075 HEPES 0,6 M natrijev fosfat, 0,6 25 % (V/V) glicerol Μ natrijeva sol pH 7,5 M kalijev fosfat 47 0,07 M natrijev acetat 1,4 M natrijev format 30 % (V/V) glicerol ph 4,6 48 3,6 M natrijev format 10 % (V/V) glicerol 0,085 M bicin pH 9 1,7 % (V/V) dioksan, 8,5 49 15 % (V/V) glicerol % (m/V) PEG 20000 50 0,085 M MES pH 6,5 8,5 % (V/V) dioksan, 15 % (V/V) glicerol 1.36 M amonijev sulfat 29,75 % (V/V) dioksan 15 % (V/V) glicerol 51 1,7 % (V/V) etilen imin 15 % (V/V) glicerol 52 0,425 M natrijev klorid 0,085 M tri-natrijev citrat pH 5,6 polimer 53 0,085 M Tris pH 8,5 10,2 % (V/V) glicerol, 15 % (V/V) glicerol 1,275 M amonijev sulfat 54 0,425 М 0,0085 M CTAB 15 % (V/V) glicerol natrijev klorid, 0,085 M magnezijev klorid 55 0,0085 М železov 0,085 M tri-natrijev 8,5 % (V/V) Jeffamine 15 % (V/V) glicerol klorid citrat pH 5,6 M-600 0,085 M HEPES pH 17 % (V/V) Jeffamine 15 % (V/V) glicerol 56 M-600 7,5 57 0,425 Μ amonijev 0,085 M tri-natrijev 0,85 M litijev sulfat 15 % (V/V) glicerol sulfat citrat pH 5.6 58 0,085 M Tris pH 8,5 0,85 M litijev sulfat 15 % (V/V) glicerol 0,0085 М nikljev klorid 0.075 Μ 59 HEPES 1,125 M litijev sulfat 25 % (V/V) glicerol natrijeva sol pH 7,5 1,7 M magnezijev klorid 15 % (V/V) glicerol 60 0,085 M bicin pH 8,5 61 0.17 Μ magnezijev 15 % (V/V) glicerol format 0,085 M MES pH 6,5 15 % (V/V) glicerol 62 1,36 M magnezijev sulfat 35 % (V/V) glicerol 63 0,065 M Tris HCl pH 5,2 % (m/V) PEG 8000 8,5 0,085 M HEPES pH 8,5 % (m/V) PEG 8000 15 % (V/V) glicerol 64 7,5 0,4 M litijev sulfat 12 % (m/V) PEG 8000 65 20 % (V/V) glicerol 0,08 66 0,16 M cinkov acetat Μ natrijev 14,4 % (m/V) PEG 8000 20 % (V/V) glicerol kakodilat pH 6,5 67 0,16 M kalcijev acetat 20 % (V/V) glicerol 0.08 Μ natrijev 14,4 % (m/V) PEG 8000 kakodilat pH 6,5 Μ 20 % (V/V) glicerol 68 0,16 magnezijev 0,08 Μ natrijev 16 % (m/V) PEG 8000 kakodilat pH 6,5 acetat 69 0,04 M kalijev fosfat 16 % (m/V) PEG 8000 20 % (V/V) glicerol 70 0,17 M amonijev sulfat 0,085 Μ natrijev 25,5 % (m/V) PEG 8000 15 % (V/V) glicerol kakodilat pH 6,5 71 0,17 M natrijev acetat 25,5 % (m/V) PEG 8000 15 % (V/V) glicerol 0,085 Μ natrijev kakodilat pH 6,5

nadaljevanje preglednice

Številka	Sol	Pufer	Precipitant	Krioprotektant
jamice			L	1
72	0,17 M amonijev sulfat		25,5 % (m/V) PEG 8000	15 % (V/V) glicerol
73		0,085 M HEPES	1,7 % (V/V) PEG 400,	15 % (V/V) glicerol
		natrijeva sol pH 7,5	1,7 M amonijev sulfat	
74	0,19 M kalcijev klorid	0,095 M HEPES	26,6 % (V/V) PEG 400	5 % (V/V) glicerol
		natrijeva sol pH 7,5		
75	0,085 M kadijev klorid	0,085 M natrijev acetat pH 4,6	25,5 % (V/V) PEG 400	15 % (V/V) glicerol
76	0,18 M magnezijev	0,09 M HEPES	27 % (V/V) PEG 400	10 % (V/V) glicerol
	klorid	natrijeva sol pH 7,5		
77	0,18 M tri-natrijev	0,09 M Tris HCl pH	27 % (V/V) PEG 400	10 % (V/V) glicerol
	citrat	8,5		
78	0,085 M natrijev klorid	0,085 M bicin pH 9,0	17 % (m/V) PEG 550 MME	15 % (V/V) glicerol
79	0,0085 M cinkov sulfat	0,085 M MES pH 6,5	21,25 % (m/V) PEG 5500 MME	15 % (V/V) glicerol
80			8,5 % (m/V) PEG 1000,	15 % (V/V) glicerol
			8,5 % (m/V) PEG 8000	
81			24 % (m/V) PEG 1500	20 % (V/V) glicerol
82	0,0085 M nikljev klorid	0,085 M Tris pH 8,5	17 % (m/V) PEG 2000 MME	15 % (V/V) glicerol
83	0,17 M amonijev sulfat	0,085 M natrijev acetat pH 4.6	25,5 % (m/V) PEG 2000 MME	15 % (V/V) glicerol
84		0.07 M natrijev acetat	5.6 % (m/V) PEG 4000	30 % (V/V) glicerol
		pH 4,6		
85	0,16 M amonijev sulfat	0,08 M natrijev acetat pH 4,6	20 % (m/V) PEG 4000	20 % (V/V) glicerol
86	0,17 M amonijev acetat	0,085 M natrijev acetat pH 4.6	25,5 % (m/V) PEG 4000	15 % (V/V) glicerol
87	0,17 M amonijev acetat	0,085 M tri-natrijev	25,5 % (m/V) PEG 4000	15 % (V/V) glicerol
88	0,16 M magnezijev	0,08 M Tris HCl pH	24 % (m/V) PEG 4000	20 % (V/V) glicerol
80	0.17 M litijov sulfet	0,0 0.085 M Tria UCI pU	25.5.9% (m/V) DEC 4000	15.0% (V/V) gliagral
09	0,17 Wintijev sunat	8,5	23,3 % (III/V) FEO 4000	13 % (V/V) gilceror
90	0,17 M natrijev acetat	0,085 M Tris HCl pH 8,5	25,5 % (m/V) PEG 4000	15 % (V/V) glicerol
91	0,17 M amonijev sulfat		25,5 % (m/V) PEG 4000	15 % (V/V) glicerol
92	0,17 M amonijev sulfat	0,085 M MES pH 6,5	25,5 % (m/V) PEG 5000	15 % (V/V) glicerol
			MME	
93		0,085 M HEPES pH	8,5 % (m/V) PEG 6000,	15 % (V/V) glicerol
94		1,5	$\frac{1}{2}$, $\frac{2}{2}$, $\frac{2}{2}$, $\frac{1}{2}$,	20 % (V/V) glicerol
77			1.6 M natrijev klorid	
95		0.085 M HEPES pH	17 % (m/V) PEG 10000	15 % (V/V) glicerol
		7,5	6,8 % etilenglikol	× , 6 · · · ·
96		0,085 M MES pH 6,5	10,2 % (m/V) PEG20000	15 % (V/V) glicerol