Zakonitosti in pomen vrašanja listavcev v smrekove monokulture mislinjskega Pohorja

Miren Čas

Ljubljana, december 1979
ZAHVALJAVA

Zahvaljujem se vsem, ki so mi pri delu kakorkoli pomagali.
1. UVOD IN PROBLEM 1
2. PREDSTAVITEV RAZISKOVALNIH OBJEKTOV 6
3. RAZISKOVALNE METODE 15
4. PROČETVANJE VRAČANJA IN PODSAJEVAanja LISTAVEC V SMREKOVEM MONOKULTURE MISLINJSKEGA POHORJA 22
 4.1. Razvoj podsajene bukve v starejšem smrekovem sestoju 22
 4.2. Naravno uveljavljanje listavcev v smrekovih sestojih mislinjskega Pohorja 31
 4.2.1.1. Dalež listavcev v treh ureditvenih obdobjih (po lesni masi) 31
 4.2.1.2. Dalež listavcev v treh ureditvenih obdobjih (po številu) 36
 4.2.2. Uveljavljanje listavcev v letvenjaki, drogovnjaki in debeljaki v mislinjskih smrekovih monokulturah 43
 4.2.2.1. Uspošnost listavcev v manjšem smrekovem sestoju (gozd - letvenjaku), kjer se je listavcem pomagalo vse od obrove sestaja 43
 4.2.2.2. Uveljavljanje listavcev v srednjeobremenem smrekovem drogovnjaku 52
 4.2.2.3. Pojav listavcev v smrekovem debeljaku 55
5. POMEN UVELJAVLJAVENIH LISTAVEC V SMREKOVEM MONOKULTURAH ZA TLA IN PODSAJEVAanja 56
 5.1. Primerjava talnih lastnosti v naravnem bukovem gozdu s tlemi pod smrekovo kulturo ter pod listavcem v smrekovi kulturi 56
 5.2. Primerjava izrazitih primerov degradacije in vpliva uveljavljenih listavcev na tla 64
5.3. Primer pomlaževanja v smrekovih monokulturah mislinjskega Pohorja 70

6. ODNOS GOZD : DIVJAD TER UKREPI NA TEM PODROČJU kot poseben dejavnik pri uveljavljanju listavcev in preseni smrekovih monokultur v naravnejši gozd 76

7. SKLEPNE UGOTOVITVE 81

8. DISKUSIJA 90

9. VIHI 92
1. UVOD IN PROBLEM

Študija obravnava problem umetno osnovanih srekevih monokultur z degradacijskimi procesi na primeru mislinjskega Pohorja, to je za rastiščih mešanih bukovo – jelejih gozdov. Proučevanje je usmerjeno spoznavanju zakonitosti pri vrašanju listavcev na svoja rastišča pri naravni premeni mislinjskih monokultur v naravnjejši gospodarski gozd.

V Sloveniji, kjer gozdovi prekrivajo dobro polovico njene površine, prevladujejo rastišča mešanih gozdov listavcev in iglavcev. Gozdovi z eno samo drevesno vrsto se pojavljajo le izjemoma na ekstremnih rastiščih ali v optimusu določene drevesne vrste.

Ponekod so se lepi, naravno grajeni gozdovi uspeli v dokaj nespremenjeni obliki ohraniti vse do danes, drugod na dostopnejših mestih pa so bili večkrat prekomerno izkoriščani. Predvsem so bili to veloposestniki, katerim je vse do osvoboditve pripadal velik del slovenskih gozdov. V želji za čim večjimi donosi so prirodne gozdove z nenaravnim načinom gospodarjenja močno spremenili in jih ponekod prijavili že do kritičnega stanja degradacije.

Gozdarji želimo te gozdove zopet privesti v naravnejše, gospodarsko in biološko stabilno stanje in jih takšne ohranjati. Nihov razvoj želimo usmerjati skladno s cilji in večstranskimi potrebami naše družbe, upoštevajoč znanstvena doganjana na področju biokosmologije. Umetno osnovane monokulture iglavcev na rastiščih mešanih gozdov so pri nas v svetu že dovolj zgodovoroka pokazale svoje negativne strani. Številne rastline in živalske vrste, ki so se skori tisočletja ohranile in razvijale v mešanogorski odvisnosti v določenem okolju, tvorijo v naravnem gozd ujamevno obtožbo žive in nežive prirode. To pa je čovek
s svojimi nepremičljenimi posegi, z golosečnjami in s smo-
vanjem starih kultur iglačev ponekod še popolnoma povraš.
Prvotna vegetacija se je okrenila le simbolično za najbolj
nedostopnih predelih. Živalstvo v svojem naravnem okolju
ni našlo dovolj hrane in zavetja, nekatere vrste so z ob-
žirenjem začele ogrošati naravni pomladek, mnoge pa so bile
na ta način pregnanate. V teh so se pričeli degradacijski
procesi, ponekod pa so bila tis s svojo produkcijo spo-
sobnostjo že pred tem, pri neslem načinu obnove, uničena.
Labilni, utemeljeno osnovani ali pospeševani sestoji so postal
neodporni proti raznim naravnim katastrofam, nastajajo so za-
čele velike gospodarske škode, trajnost gozdov je posta-
la negotova.

Način takšnega gospodarjenja sega že v sredino 17. in v 18.
stoletje, ko so s pojavom plavjarstva in sveklarstva nasta-
le velike potrebe po oglju in popelji (2). Uveljavljati pa se je začelo tudi žagartstvo. Na velikih površinah so priče-
lí organizirano sekat naravne gozdove. Na njihovem mestu
pa se pospeševali določene donosnejše vrste iglačev, pred-
vsem sreko.

Takšen razvoj so doživljali tudi bukovo - jelov gozdovi
mislinjskega Pohorja. Po navedbah ing. Pahornika (2) so bili
plavljali iz iskoriščanje skromne želzove rude postav-
ljeni že v letu 1677 v Mislinji. Takrat so nastale tudi
prve geometrijsko oblikovane poseke, ki so jih, kakor po
vsem Pohorju obnavljali na zelo preprost, za gospod tla
učiščujoč način.

Na njih so najprej pošagali prizade vejevja z drugimi sečnimi
ostanki, zelo je nato povežano obdelali in je pripravili prvo
leto za začetno krompirja, naslednje leto pa za setev ali
žal, ovse, oziroma paščenca, pomešanega s srekom vesencem.
Šeže je kakor krompir in žita skoraj povsod odlično uspelo
in v začetki strniča ustvarilo kot štet gost pomladek. Tega
je edino živina ponekod vrljelasto preredilo. Nastale so
močno strnjene in temačne sarekove monokulture, ki so vse do poseka ostale nepredređene in prepustene naravi. Poleg drugih negativnih pojmov je dejanski prirastek lesne ma-
se zmanjšal za 1/3, potencialni prirastek pa je bil izkoriš-
čen le 50 % (2). Pomaševanje je bilo skrajno oteženo, tlotvorni procesi se izučenih in zbitih tleh zavrti, priša-
lo se je kopičenje surovega humusa. Prednosti prvotnega ma-
šanega gozda so vse bolj izginjale.

Kazneje so veleposostnik bi posekah drevje selo na redko sadili, tako, da se ni strnilo, ampak se je večato razrast-
lo v nekvaliteten les. Tudi to je vplivalo na zmanjšanje pri-
rastka. Presvetljena in druga nepogodena mesta pa so se hit-
ro zatrašila, zarastla z malinovjem, ponekod na ravnicah pa selo zamačvirila. Tako so nastali tudi nepogodeni pohorski pašniki, ki imajo danes vse pomennejše socialno - rekreativ-
no funkcijo.

Edino delo pred golosečjasi v nastalih monokulturah je bilo izsekovanje redkih listavcev, ki so se slučajno pojavili ali omanili. Svoj višek je takšno gospodarjenje doseglo z razsvetom steklarn in fušin okoli leta 1880 in se ponekod ponovilo tudi že tretjič.
Stanje v sarekovih monokulturah mislinskega Pohorja je ta-
ko večje postalo zaskrbljujoče.

Paša pred vojne in previsok stalež parkljaste divjadi, pa
še danes zaradi pomanjkanja hrane z močnim obžiranjem red-
kih listavcev in pomlada to stanje otežujejo. Gospodarje-
nje s temi gozdovi je v pogledu dolgoročnosti postalo selo
težavno.

V povojnem obdobju, ko so gozdovi nekdanjih veleposostnikov prešli v družbeno last, so golosečje in snovanje osebnih monokultur na rastiščih mešanih gozdov z zakonom prepove-
dali. Prešli smo k prirodnejšemu gospodarjenju z gozdovi,
ki temelji na naravnem poslajevanju in negi gozdnih sesto-
jev. Gilj nam je postal zdrav, gospodarsko stabilen, mešan
gozd smeke in bukve, ki naj bi poleg trajne produkcije kva-
litetnega lesa opravljal še druge, za človeka pomembne funk-
cije.

Pri posornejšemu opazovanju narave in pri ureditvenih pre-
gledih smrekovih sestojev so domači gozdarji opazili, da na-
rava že sama kaže določene pozitivne tendenčne k vračanju
prvotne vegetacije na svoja rastlinska. (Pri tem opazimo po-
membno vlogo živalskih vrst, predvsem pri prenašanju semen
nekaterih avtohtonih vrst listavcev).

Gozdarji želijo te zakonitosti še bolje spoznati in jih upo-
rabiti pri racionalni prenem v naravnejsi gozd ter se tako
izogniti velikim stroškom in vprašljivemu uspehu pri umetnih
posegih.

že kmalu po vojni so gozdarji s podsajevanjem bukve v sta-
rejše smrekove sestoje poskušali ustvariti naravnejšo zmes
drevesnih vrst in tako zavrteti procese degradacije. Ti pos-
kusi pa se zaradi visokega stolpeča parkljaste divjade niso
najbolje obnesli. Potem so začeli s izbiranimi redčeni po-
magati redkim listavcem, ki so se po naključju ohranili v
teh čistih smrekovih sestojih. Uspehi takšnih pronašenih
ukrepov nege so danes že vidni. Listavci se vse bolj uve-
ljavljajo, njihova vloga v mislinskih gozdvih je vse večja.

Gozdarji na območju GG Slovenj Gradec pa v zadnjih letih tu-
di dobro sodelujejo z lovci. SIS za gozdarstvo GGO Slovenj
Gradec je v sodelovanju z IGLG v Ljubljani imenovala stro-
kovno komisijo za sklapanje lovitve s gozdarstvom. Na
območju TOŽD – a za gozdarstvo Mislinja pa ima to sodelo-
vanje že posebno tradicijo (ing. Jože Filej in drugi).
V nalogi želim ugotoviti, kako se je uveljavljala podaljšena bukev in od katerih skoloških faktorjev je odvisen njen razvoj?

Nadalje želim ugotoviti, kako se listavci uveljavljajo v smreki gošči, letvenjaku, kako v drogovnjaku in debeljaku ter od katerih naravnih pogojev zavisi njihovo pojavljanje in razvoj?

Iz treh ureditvenih razdobij (1954, 1964, 1974) želim na podlagi meritvenih podatkov ugotoviti, kakšen razvoj so mislinjski gozdovi in listavci v njih doživljali v povojnem obdobju in kakšni so razvojni trendi?

Naslednje želim ugotoviti, kako obstoječi, že uveljavljeni listavci s svojo prisotnostjo vplivajo na stanje v sestojih "forsirane" smreke, predvsem na tla in postajanje?

Pri obravnavanju problema vračanja listavcev v smrekove monokulture me zanima tudi odnos gozd: dirjad in usklajevanje ukrepov na tem področju, kot pomembni dejavnik pri premeni v naravnejši gozd smreke in bukeve.

Iz preteklega življenja mislinjskih gozlov ohranjena bajtarija in avtohtoni listavci ob njej (fotografija 1)
2. PREDSTAVITEV RAZISKOVALNIH

OBJEKTIV

KATASTERSKI PODATKI

Pretežni del gozdnih Mislinjskega Pohorja, kjer ležijo raziskovalni objekti, je kompleksen ter sestavljen iz višje in oddaljene leg. (Mislinjski jarek ter vzpetine nad Dovšami). Le pozamenje v gozdne površine leži v neposredni bližini krajev Mislinja in Šentilj v dolini reke Mislinje.

Površina gozda gospodarske enote Mislinja je 3.844,3 ha, o tega je bilo leta 1954 3.505,7 ha ali 91,3 % gozdnih površin. Zaradi zaraščanja pohorskih pašnikov, prevzel po pripovedi paša na pohorski planoti se to število še povečuje in je leta 1964 doseglo že 117 ha več, to je 3.623,4 ha ali 94,4 % gozdnih površin. Podobno stanje je bilo tukaj tudi ob zadnjem uredivanju gospodav leta 1974. Od teh gozdnih površin je bilo leta 1954 2.750 ha ali 73,9 % enodobnih sestojev, ki jih lahko smatrano kot smreke monokulture, leta 1964 2.850,5 ha ali 82,8 % in leta 1974 2.514,2 ha ali 76,8 %. Ostale površine se delijo približno na polovico med predbiralne in varovalne visokogorske smreke gozdove. Površina enodobnih gozdov se povečuje predvsem zaradi prehajanja mladih sestojev nad meritveni prag (torej neodetelino 10 cm, ki se pri meritvah pri pregledu sestojev že upošteva).

OGROPOFSKI ZNAČAJ

Turičnica, ki izvira pod Kalo Kopo, poteka v smeri JZ do kraja povše in loči Razborco od Golavebuke. Mislinja, v katero se nižje od Dovž izliva Turičnica združena z Dovžanko tvori tu srešnje široko dolino, ki se spušča od Mislinja in naprej ob Slovenjgraeškem Pohorju v SZ smeri proti Raštolovemu vrhu nad Slovenjgrašcem.

Bolj ali manj širokohrbno slemenje teh grebenov z vsebinsnimi in kopastimi širitvami se cepi v manjše grebene, odcepe in rebraste odrastke s strmimi južnimi pobočji ter je razbradano z mnogo številnimi jarki in žlebi. Ti se v spodnjih delih pobočji združujejo v vse redkejše in globje jarke s potoki, ki se na koncu iztekajo globoko v Pohorski masiv usekaj Mislinjski jarek. Voda, ki je na Pohorju glavni reljefni oblikovalc ustvarja ob potokih in Mislinji najbolj strma pobočja.

Nadmorska višina z najnižjo koto v šentilju s 593 m.n.v. in z najvišjo na Črnem vrhu s 1543 m.n.v., ki je obenem najvišji vrh Pohorja, daje predelu Mislinjskega Pohorja visokogorski značaj.

HIDROGRAFSKI ZNAČAJ ENOTE

Vzhodni del mislinjskega področja je vlažnejši kot ostali predel. Desno nad Mislinjskim jarkom opazimo ponekod zelo veliko sušnost tal. Svet ima južno lego, tla, sicer niso prepletva, vendar so prašna, nehomogena, veže jih le koreninski pletež, zemlja nerada vpija vlago ter je podvržena izpiranju.
Rasprotje tej sušnosti so zamočvirjena tla. Na ravnicah in vse-

Hranje srednjih mesečnih in letnih temperatur iz dolgoletnih

Na večje dežja pada v poletnih in jesenskih mesecih, prvi letni

Na opazovanj o pogostnosti in jakosti vetrov je razvidno, da je

A KLMATSKEM ZNAČAJ ENOTE

V klimatski pogledu se odlikuje ta del Fohorja po ostrih zi-

Na večje dežja pada v poletnih in jesenskih mesecih, prvi letni

V zgornjem delu visokogorskih planot, ki ima zastroje primera na

V zgornjem delu visokogorskih planot, ki ima zastroje primera na

V zgornjem delu visokogorskih planot, ki ima zastroje primera na

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je

Za izražanje zimskih razmer, ki se javijo v zgodnjih mesecih, je
močnejših vetrov. Najbolj pogosto pa pihajo vetrovi pravokotno na jugozahodnik v smeri SJ - JV. Obilna vлага toplih zračnih gmot, ki jih prinaša jugozahodnik, povzroča na gozdnam drevju velike škode. Vлага, ki se pozihi v mrazu kondenzira in zadružuje v obliki ledu na drevju, lomi vrhove in veje. Posebno so temu izpostavljeni pregosti ali močno preredani stotaji smrekovih monokultur. Če se temu pridruži še močno sneženje še možnost katastrofe še večja. Tak primer je bil leta 1951, ko je vester polomil 16.900 km² lesa.

\[\text{Diagram:}\]

\begin{itemize}
 \item Najmočnejši in
 \item najpogostejši vetrovi
\end{itemize}

Žato moramo pri gozdnogojitvenem načrtovanju in pri sečnjah upoštevati nevarnost teh vetrov.

Iz navedenih podatkov o temperaturah, padavinah in pogostnosti ter jakosti vetrov razberemo, da so splošne klimatske razmere dokaj ostre. Zanimivi so tudi podatki o prvem in zadnjem mrazu, ki se lahko pojavita že v mesecu septembri in še vse do pozne pomlad - junija. Tudi ta podatek je za gozdnogojitveno načrtovanje zelo važen, še posebno pri vnašanju drevesnih vrst in pri načini obnove sestojev.

GEOLošKA SiliKA

V geološko-petrograškem pogledu govorimo o Pohorju kot o kristalinskih kameninah in kristalinsko sedimentnih slojih. Področje gospodarske enote Misočina je v tem pogledu dokaj pestrto, toda osnova je v celoti kislo - silikatna. Pohorje je za okrežen pramasiv in nekak podaljšek Centralnih Alp. IZ geološ-

Tla

krajevno razlikuje odvisno od reliefnih pogojev, geološke podlage in vegetacijske odeje. Podrobnejše značilnosti tal so podane v poglavju 5. VEGETACIJSKI ZNAČAJ MISLINJSKEGA POHORJA

Pri iskanju odgovora, kakšna je bila prvotna pohorska vegetacija, ki ustrezala predstavljeni klimi, so fitocenologi uporabljali predvsem naslednje viri:

1. Ugotovitve palinoloških raziskav pohorskih barlj (raziskave cvetnega prahu v plasteh šotnega blata Ribniškega in Lovrenškega barja ter Borovja), ki kažejo, da se sedimentacija šotnega blata v njih prišela že 6.000 let pred n.št., to je v borealni obdobje ali v obdobju lesa. Prvi topoli obdobja je sledila srednja topla obdobja hrasta, imenovana atlantska obdobja, kateri se je v hribovitih predelih pojavila smreka.

Mešan gozd hrasta se je od začetka n.št. navzgor vse bolj odmakal gozdu bukve, smreke in kasneje jelke. Prvi mešani pa so jim bili bor, nasaden (avtohton!), javor in beli gabor s pionirskimi vrstami kot so: vrbe, jelše, breze, trepetlike in jerebice, ki so na ekstremnih rastiščih prisotne še danes. Fozobne klimatske razmere še trajajo.

2. Podatki iz starih zapiskov in kart. Najbolj zanimiva je Hillova gozdeno-zgodovinska karta pohorskega masiva v merilih 1 : 100.000 iz leta 1889 in poročilo Rallyja iz leta 1856 o pohorski planoti in njenih pragozdovih. Iz teh virov lahko ugotovimo, da so takrat velike predel svebohrja nad višino 1.000 m pokrivali še pragozdo slični jelovi, bukovi in mešani jelovi, bukovi in smrečki gozdovi s primerno javorja. Prisotni so bili tudi jerebica, jelše, breza in trepetlica ter gorski brest in veliki jesen v zaščitenih prisojnih grahah. Na področju gospodarske enote Mislinje med Ribniškim in Lovrenškim jezero ter na Volovci in Kraguljašču pa so prevladovali čisti jelovi sesteji (Miklavžič 2).

Že takrat omenja Rally velike gozdeke na južni strani Pohorja (verjetno na Rakovcu in mislinjskem področju). Prirodni gozdi so bili ob koncu 19. stoletja na pohorski planoti pretežno že uničeni. Kmečki gozdovi pod planoto od
Glede prvotnih gozdog lahko zaključimo, da so nam znane osnovne gospodarsko važne in spramljajoče drevne vrste, ki so nekoč gradile pohorske gozdove. Zaradi določenih eko-
loških razmer so se pojavljale ali v čistih ali v bolj ali
manj mešanih gozdovih. Gozdove so sestavljali Jelka, bukev,
sareka in njima pridruženi gorski javor ter jerebka. Na
ugodenih legah so se pojavljala tudi bor in sacecen, ponekod
pa celo gorski brest in veliki jesen. Na jasah se pojavljaj-
jo pionirije gozda: breza, trepetlika, na pivirnih podrčjih
siva jelša, v višjih legah pa zelena jelša in vrbe.

Opis vegetacijske slike Mislinjskega Pohorja je obširno
podan v osnovnem gozno-gospodarskem načrtu na GG Slovenij-
gradeh iz leta 1994. Šplošni fitoecnološki opis, ki ga je
napravil dr. Wrabar in zaprašanje dr.ing. Klinška, ki je
prvi ureditveni načrt tudi sestavil, ugotavljajo predvsem
naslednje:

Gozdna vegetacija mislinjskih gozdog, je pod vplivom dolgo-
trajnega gospodarjenja v pretkosti bistveno spremenila
svogo prvotno sestavo, ko jo je danes težko rekonstruirati.
Prejšnji bukove-jelovi sestoji so se ohranili le na
najbolj oddaljenih in nedostopnih predelih (odselek 65 a,
68 a, 42 a in Jauhor kmečki gozd v oddelku 79 a). Tradi-
cionalne večnje na golo na večjih površinah, poščifanje frat, iskoriščanje gozdnih površin za krajšo dobo v poljedelske namene in intenzivno izsekovanje listavcev so bili pogoj za premeno prejšnjih mešanih sestojev v smrekove monokulture na rastliščih bukovih, mešanih bukovo jelovih ali bukovo smrekovih gozdov. Žato je bukoč postala zelo redka ali pa je na velikih površinah celo povsem izginila.

Iz pregledov vseh teh smrekovih sestojev je razvidno, da je starostni razred od 81 do 100 let močneje zastopan kot ostali. To dopušča sklep, da je na Pohorju pred okoli 90 leti, to je okoli leta 1890 doba sečenj na golo dosegla svoj višek, kar je tudi v skladu z razcvodom in kasnejšim opuščanjem steklarn in fužin.

Danes so tako daleč najbolj razširjeni tipi smrekovih gozdov, ki so se razvili pretežno iz nekdanjih bukovih in iz mešanih bukovih- smrekovik- jelovih gozdov. Naravni smrekovi gozdovi so prisotni le v višjih legah, nad nadmorsko višino 1300 metrov, kjer zaključujejo klimatično gozdo združbo. Ta področja so bila v preteklosti spremenjena v znane pohorske planjave, Danes, ko so na njih prenehali s pašo in košnjo se zaradi ekstremnih življenjskih pogojev počasi v šopih zarastajo.

Najbolj splošen tip degradiranih smrekovih gozdov je smrekov gozd z vijugasto mamico (Picetum Deshampsietetum flexuosae), ki se pojavlja v nižjih in srednjih legah. Ta gozdn tip predstavlja biološko najbolj degradirane in tudi gospodarske slabše sestoje. Tla so srednje globoka do globoka, suha, prašnata, pH 3-3,5 v sloju A0 - A1 in v sloju B okrog 4. V drevesnem sloju se pojavljajo razen smreke še redki listavci (bukev, ...gorški javor, jerebika in jelša). Žrtvovni sloj je izredno slab razvit (volčin, kosteničevje, robida, melina, nižje pa tudi leska).
Tudi zeliščni sloj je siromašen po številkah vrst, prevladujejo trave, predvsem višjega smanča. Obilnost pritalne vegetacije pa se ravnava po starosti in sklenjenosti sestojev.

Poseben problem predstavlja tudi zdržava smrekovega gozda z gozdnima sašuljico (Piceetum Calamagrostidetosum variae). Gozdnov sašuljica je zelo razširjena in predstavlja na Pohorju pleve vel najhujše vrste, ker ustvarja debelo, nepropustno, gosto ruščo in s tem preprečuje naravno obnavljanje velikih površin.

Ned prostornimi smreковimi monokulturami so se le na najbolj nedostopnih predelih ohranili še avtohtoni jelov - bukovi gozdovi.

Degradirana, s travo po- rashčena, teška in v preteklosti nenagovorne smrekovine monokulture.

Fotografija 2

Fotografija 3
3. Raziskovalne metode

V želji, da bi simbolji realno prikazal prisotnost listavcev v smeškovih monokultur Ribniškega Pohorja in odgovoril na začetek izmed izmenečenih pojmov, so v rednem poročilu med slovenskimi geolokalavnimi in slovenskimi geolokalavnimi podatki iz ureditvenih načrtov na Slovinska podružnica na Slovinska podružnica.

Da bi podrobnejše posneli nekatere zakonitosti in druge pojavile pri naravnem ali umetnem vračanju listavcev na njihova rastlina, so na južnem poboju Ribniškega Pohorja med Ribniško kočo in Polj v Kislinjskem gradu izbrali tri raziskovalne objekte:

1. Prvi leži v starejšem smeškovem sestoju – s prinesjo macezn alajak star okoli 90 let). Sestoj leži neposredno nad šolo v Mislinjskem gradu v oddalju 47 in b na načrtovski višini 850 m ter zarašča greben med dvema potomka. Delež listavcev (bujev, javor) v stražnem zgorjanem sloju toga sestaja je izredno najh. V gradnem sloju se je pojavila leska; tla, ki so pokrita s surovnim humenjem od smeškovih iglic so pa le slabo potisla s trulami. Suha, srednje globoka kisla, rjava gozdana tla na toplotnem grebenu preidejo preko strmih brstov na vlado, plemič, ponekod skeletne tla ob večju...
Da bi izboljšali stanje v sestoju in vzpostavili naravnejšo zem drevesnih vrst, so pred 20 leti (leta 1956) podsajevali bukev predvsem za biološko primes v polnilnem sloju, ki pa je še danes zaradi obširnega divjadi v veliki meri v sprednjem in pritolčnem sloju.

2. Drugi raziskovalni objekt sem izbral v srednjedobnem smrskovem sestoju s primeso mačesna (drogovnjak star okoli 80 let).

Sestoj pokriva področje Bričke v oddelku 44/I a in 44/II a, na nadmorski višini 1200 m, kjer se še pojavlja močnejši delš listavcev v zgornjem in srednjem sloju. Grmovnega sloja ni. Tla porita s surovin humusom so skoraj povezen popolnoma neporastla, le na svetlobi odpri površini obe cesti so močno zatravljena.

Sestoj leži na širokem, rahlo zaobljjenem pobočju grebenu, 2 km pod Šiškiško kočo med dvema potokoma na srednjeglobokih do globčkih kislo - rjavih gozdnih les.

3. Tretji raziskovalni objekt pa sem izbral v mlajšem smrskovem sestoju (gošča - letjenjak star okoli 30 let).

Rovnina, izmenovana po bližnjem kmetu "Jauhová Frata" predstavlja zelo strmo zaokroženo, proti V in SV carnejo pobočje v oddelku 43 o; na nadmorski višini 1100 m. Nasaj na grešen ob Jauhovem, še naravnem, predvsem predvsem grešenom gozdu v oddelku 79 a in na Krejcove potok 200 m nižje.

Pred II. svetovno vojno je bil tukaj kvaliteten smrekov debeljak (D), ki je bil poseben na golo in obnovljen na že novejše načine. Le manjši del je bil požgan, sajen s krompirjem in potem s smrskovimi sadikami. Na tej površini danes skoraj ni opaženi novega listavca. Več jih je na ostalem večjemu delu (6 ha), kjer so po poseku seštevki ostanke zlošili v vrste po pobočje in površino obnovili s smrskovimi sadikami. Še danes so v takšnem sestoju videne neobnovljene linije. Listavcem, ki so se

D - domačini (astno izročilo)
bujno pojavili so pri gojitvenih delih posvečali enako pozornost kot smreki. Na površini (približno 3 ha) kasneje osnovane poseke, so danes še močno prisotni pionirji gosada, kot so: vrba, breza in rdeči bezeg.

Tla so vlažna, srednje globoka, ponekod plitva do skletenja.

Da bi bolje zajal različne rastline pogoje in spoznal njihov vpliv na razvoj in uveljavljanje avtohtonih listavcev, sem v prvi in drugem raziskovalnem objektu pri terenskih analizah izbral ploskve, razvrščene v linijo preko grebena, od potoka do potoka.

Na prvi liniji sem z merilnim trekom za merjenje debel označil 8 raziskovalnih ploskev v obliki krogov, s polmerom 7,97 m (tj. površina 2 arov). Razdalja med ploskvami je bila 40 m, merjena s koraki. Prva in zadnja ploskev sta bili oddaljeni od potokov okoli 15 m. Linijo na tem objektu sem označil v gozdarski karti kot prvi južni pas ali J - I. Linija je dolga 310 m in potoka s dočiščenim azimutem 170° proti Z. Višinska razlika med zgornjo točko na zaobiljenem grebenu z naklonom 21° na nadmorski višini 900 m ter spodnja točkana linije je 30 m oz. 70 m na Z. Naklon pobočja je na V 42°, na Z pa 40°.

Na drugi liniji v smrekovem drugovnjaku, označeni z J - II sem prav tako kot na liniji J - I označil 19 raziskovalnih ploskev, s površino 2 arov v medsebojni razdalji 40 m.

Linija je dolga okoli 790 m in potoka za azimutom 145° proti Z. Nadmorska višina na sploščenem pobočnem grebenu z naklonom 31° je 1260 m. Najnižji točki linije sta ob potokoma, na Z z višinsko razliko 110 m, na V pa z višinsko razliko 100 m. Zahodno pobočje ima naklon okoli 34°, vzhodno pa 29°.

Na tretjem raziskovalnem objektu, na Javohvi Frati sem raziskovalne ploskve razvrstil v dva linijah, ki se pravokotno
sečeta v obliki križa. Prva linija, dolga 145 m, ki razpolavlja smeke levjenjak, se strmo, z enakomernim nakonem 360 spušča od grebena (30 m pod Jauhovim trošajnikom) do Krajcevega potoka (10 m pod slapom). Druga linija, dolga okoli 210m (dolžina linij izračunana iz specijalke) pa poteka po izolirani z nadzorsko višino 1100 m od skale na Jauhovem grebenu in se 30 m nad slapom v Krajcevem potoku sliče z linijo struge.

Na linijah sem s 5,6 dolgo vrvico označil ploskve v obliki krogov (s površino enega ara) v sedmojno razdalji 50 m, merjeno s korako. Na prvi liniji sem označil 4, na drugi pa 3 ploskve, v razdalji 15 do 25 m od roba sestaja. Za označitev sem uporabljal staniol papir. Raziskovalni objekt je na kratko označen kot Jauhova frata z rimsko številko III.

Lega in oblika raziskovalnih objektov in linij z raziskovalnim ploskvama je vidna in vrisana v priloženi gozdarski karti, z oznako K 2.

Na raziskovalnih ploskvah sem opravil naslednje meritve:

I. Opis opis rastīča:
- zaporedna stelvila in oddelek
- lega raziskovalne ploskve - nebesna stran (z busolo)
- naklon (označen z merjen z naklonomerom)
- tla (normalna, skeletna)
- blišina jarka, ceste, jase;

II. Popis vegetacije na ploskvah J-I in J-II
- zaporenedo stelivo listavca
- drevesna ali grmovna vrsta
- prsni premer - za podsajeno bukev, premer merjen pri tleh (s premerko oz. žepnim metrom)
- višina (z višinometrom)
- prirastek (s sveom za vrtanje branik); izvrtnke sem
- točno označil s svinjnikom
- IUPO klasifikacija (klasifikacija mednarodne zveze gozdarskih raziskovalnih organizacij, kjer označujejo sloj, tendenco in vitalnost)
- poškodbe (divjač)
izvira povprečnega iglave na ploskvi (smreka, zasešen); višina, debelina, število, prirostek.

Zaradi lažje primerjave med ploskvami pri različnih naklonih sem vse številčne podatke osebkov gozinega dreva za njih preraščal na enoto površino 2 a, po formuli:

št. p = št. pl. x \(\frac{1}{10} \)

Da bi bili vsi podatki primerjeni za statistično obdelavo, sem vse izvrtke kronološko obdelal na elektronskem aparatu za merjenje branik z binokularjem. Od zadnje branike, zrasle v vegetacijskem letu 1974, sem izmeril vsaj 30 branik na zasaj, odvisno od dolžine izvrtka.

Na J-I sem se pod poslednjim bukvami izbral uspele in neuspele bukev na 7. oz. 5. raziskovalni ploskvi ter za primerjava steferi, gafične in fotografijo prikazal njune preroze.

Na ploskvah Jauhove frate sem ugotavljal le stanje vseh osebkov po ILRFU klasifikaciji in število vseh štorov nastalih pri šifčenju goščo.

Zožeg analiz iz podatkov v uređitvenih načrtih in na raziskovalni obliki sem opravil še nekaj zanimivih opazovanj v bližini načrti raziskovalnih objektov.

Opazovanje sem opravil tako, da sem od robu Jauhovega gozda, kjer se pojavitje oseb pas smr-bu posmehs (širok okoli 3 m) proti vodrenjosti gošče in se naprej v letenjak s smreko pogodene Jauhove frate, označil progo dolgo 10 m in široko 4 m. Na vzake 2 metra sem zabeležil število lučkov in. osred v zgornjem sloju. Razdalje sem meril z malinjo tračnik. Proga leži na Jauhovem grebenu 40 m pod Jauhovim tro- meščnikom in je označena na gozdansk karti z rimako št. IV.
II.
Na jasi v omerekem drogovanjaku, na liniji J-II, nastali pri poseku smrek napadnih od rdeče trohnbode in sekundarno od lubedjarnja, sem opazil bujen pojav avtohtone vegetacije v zeliščnem sloju in opravil analizo posledka drevesnih in grmovnih vrst, ki se tam pojavitijo. Ugotavljal sem število in stanje osebkov preko jase.

Oblika ploskve je vidna s skice, lega in dimenzije pa so naslednje:
- nazemsk višina je 1200 m
- os podolgovate jase leži v smeri padic na grebenu
- zaklon grebena je 14° z lego proti J
- dolžina jase (1) = na sestojna višina, tj. približno 28 m
- širina v zgornjem delu jase
 - d_1 = 2/3 sestojne višine
 - širina v spodnjem delu d_2 = 1/4 sestojne višine.

Na gozdarski karti je jasa označena z znakom ® in rimsko številko V.

III.
Naslednjo analizo sem opravil na več krajih. Analiziral in primerjal sem talne profile (kislost - pH, struktura, vlažnost, prekoreninjenost). Raziskave sem opravil 20 m pod grebenom, na JZ pobočju v naravnem jelevo-bukovem gozdu in v monokulturi z enakim položajem, približno 100 m od toč. Za primerjavo sem analiziral še tla v smrekovi monokulturi, prekrita s surovim humusom in tla pod listavcem v njej.

Animale so se sprejemle v tleh nastale pri različnem nasišanju gospodarjencev, če gozdovi.

Na omenjenih mestih sem z lopato iskopal jase. Široke 30 - 30 x 50 cm, globoke od 30 - 60 cm, glede na globino načlani podlage. In vseh talnih horizontov sem pobral vzorce na, ki sem jih označil in opravil v polivinilaste vreče.
Vzorce sem analiziral v pedološkem laboratoriju Biotehniške fakultete v Ljubljani s pomočjo prof. Sečiša. Lege izbranih profilov so označene na skici z znakom L in rimsko št. VI.

IV.

paslednjo analizo sem opravil v smekevem drogovanjsku blizu linije J-II. V zgornjem drevesnem sloju sem izbral dva listava; bukev in javor, da bi analiziral raztresenost odpadega listja po tleh pokritih s surovimi smekevih iglic. Zanimala me je velikost in oblika površine, ki jo listje prekriva; gostota razmetanega listja v različni oddaljenosti od drevesa ter vpliv odpadega listja na izboljšanje rasmer v tleh.

Zato sem z busolo v vsakih štirih nebesnih straneh z merilnimi trakom označil linije in na vsake 4 metre z acetikimi placiči označil 1 m², vse dokler se je listje še pojavljalo. Na teh kvadratnih ploskvah sem pozno ješeni zabeležil število vsega listja odpadega v zacnjem vegetacijskega leta, obenem pa sem označil šeštevilka rimskega listnja.

Izmeril sem tudi prav jazer in vseline izbranega drevesa, tolera krožnje ter naklon, lege glede na nevesno stran in pozicije na grebenu.

Ratresenost listja in ostale podatke sem prikazal v skicah. Leta izbrane bukev in javorja v sestavi pa sem označil na karti z znakom Z in rimske številke VII.

Podatke, zbrane na vseh teh raziskovalnih objektih sem statistično obdelal in jih prikazal v obliki tabel in grafično v obliki poligonov, histogramov in regresijskih krivulj. Regresijske krivulje sem izvelekel s prostoročno metodo, saj sem se tako izognil homogeniziranju in sem lahko najbolje sprozil nekatere individualnosti in povečali vrednost pri uveljavljanju listavcev. Zgoraj obsežne naloge so grafi in tabel pričujo sprošči, ločeno ob poglavjih in se sledijo v zaporednih številkah.
4. 1. RAZVOJ PODSAJENE BUKVE V STAREJŠEM SHREKOVALNEM SEDNOCU (DEBELJAKU)

Iz analiz pred 20-timi leti podsajene bukve v normalno sklenjenem shrekovem debeljaku nad šolo v Mislinjskem grabnu, kjer leži raziskovalni objekt, lahko razberemo, da bukev ni povseden enako uspela. Fokalno se je, da so na njem razvoj od grabna do grabena vplivali različni ekološki faktorji. Bukve na tem raziskovalnem objektu je bila podsajena leta 1956 z mladikami izkopanimi v bližnjih goršovih. Podrobnejše proučevanje ekologije teh bukovih podsajenk ni je dalo več zanimivih in uporabnih odgovorov.

Za primerjavo različne uspešnosti v rasti bukve na raziskovalni liniji preko grabna prilagam najprej dve fotografiji. Prva prikazuje presek uspele in izgled neuspele - od divjadi obite bukove podsajenke. Druga pa izgled razraščene podsajene bukve, visoke okoli 60 cm, v shrekovem debeljaku nad šolo v Mislinjskem grabnu.

Prerez uspele bukove podsajenke s premerom d=4,8 cm in višino h=4,6 m ter izgled neuspele bukve s premerom d=1,25 cm in višino h=0,16 m.

Fotografija 4
Vitalna bukova podsajenka se je zaradi obžiranja od divjadi močno razgajala v širino.

Za boljši prikaz različno uspešnih bukev prilagam še grafičen potek rasti v dobelino pri uspeli in neuspeli bukvi (graf 4).

Da bi laičje prikazal različne uspešnosti v rasti podsajenih bukev na raziskovalnem objektu, sem pri analizah določil množične uspešnosti. Za uspešne sem smetral bukeve, ki so varne pred obžiranjem od divjadi. Za takšne sem določil vse bukeve, ki so dosegle in presegle višino 90 cm. Od podsajenih bukev, ohranjanih do danes, je teh na raziskovalnih objektih ugotovljenih 57,6%.

Razporeditev vseh analiziranih bukev na raziskovalnih ploskah po dobelinah in višinah je prikazana na grafih št. 1 in 2. Prvi prikazuje korelacijo med premeri in višinami, drugi pa številčno spreminjanje pri različnih premerih in višinah.

Različne vrednosti in velike odstopenja od regresijske krivulje kažejo, kako različen je uspeh v rasti istočasno podsajenih bukev. Pred 20-timi leti podsajene bukeve lahko imajo premer 0,5 ali 5,0 cm in je lahko visoka 8 ali pa kar 460 cm.
pri premeru 1,5 cm lahko ima vrednost 8 ali 200 cm.

Nadalje vidimo, da je velika večina od obstoječih podsajenk že vedno v pribalnem in spodnjem smrvenem sloju (graf a in b) in da se le počasi pretlakuje nad višino 90 cm. Šele pri premerih višjih od 2 cm je šteto uspešni osebkov večje.

Iz 1. in 2. grafa razberemo, da je do višine 1,5 m kar 71,6 % analiziranih bukev in do debeline 2 cm 70,4 %; od tega je le 23,8 % uspešnih in 47 % neuspešnih. Nad to debelino je preostalih 27,2 % uspešnih in le 2,2 % neuspešnih bukev (za leto 1975).

Rasporeditev vseh analiziranih bukev na 8 ploskvah raziskovalne linije preko gretena je vidna na grafu št. 3. Vzrok velikih razlik je različna rastišča, predvsem pa divjad, ki te razlike še povečujejo. Pojavljajo se rastišča, kjer bukev odriva prirašča in je visoka tudi nad 4 m. Na drugi strani pa opazimo množico podjelek, ki životarijo in se borijo za obstoj v pribalnem sloju smreke sonokulture in skoraj ne priraščajo v višino. Poleg težkih življenjskih pogojev jih na taktih rastiščih trajno ogroža divjad, ki je posližni in spomladati zaradi pomanjkanja hrane močno običajo. Kljub temu pa se te bukove podjelekne odlikujejo z izredno vitalnostjo in regenerativno sposobnostjo, saj se stalno obraščajo. Po jih je octnilo več do danes, pa šeprav mnoge niso višje niti od 20 cm. Izpadle so le najbolj ogrožene, predvsem na naseljenih rastiščih, kar je razvidno iz grafa št. 3. Na takšnih mestih je lahko naša pomoč z zaščito z raznimi uspešnimi premazji škropovi najboljše "zdravilo", da se osebki prebirajo v višine vzdolž pred divjadjo.

Načini obraščanja bukoveh podsajenk

skica 1

skica 2
Na teh področjih najdemo leske, stare tudi preko 50 let, s premerom okoli 15 cm in višinami do 8 m. Povečan pa je tudi prirode dreves, zlasti sreke v zagornjem sloju. Podoben pojav povečane vitalnosti in konkurenčna moč listavcev, opazimo drugače še za aceretnih rastišč ob potokih. Vi- dimo, da se tod listavci najpočnejo uveljavljajo in se tudi sami po neraven poti vračajo nazaj na svoja rastišče, od koder so bili nekoč izričnjeni.

Poleg tega lahko opazimo, da se listavci pojavljajo še ob v zemljo vsakih kolovozah, kjer so tla rahlo presvetljena, odprta in bolj sveža ter niso prekrita s subo plastjo spro- vega humusa, ki stežka poslajevanje.

Videli smo (graf 5 in 6), da se na takšnih rahlo presvetlje- mimih, bolj svežih in s mineralnimi substancami bogatejših tleh poleg ustrezno podesjenih bukev pojavlja še več vrst li- starcev. To so javorji, bukve, leske, rdeči bezog in dišeči volčin (graf 6). Vse te vrste so zelo važne kot biološke pri- mes v polnilnem sloju, poleg tega pa so v zgornjem sloju še gospodarsko pomenne. Z njimi se obogata biocenoza, kar pomeni tudi čitiv te favne, ki igra pri poslajevanju listavcev zelo pomenno vlogo. Končno pa se to ceken, ki bodo nekoč razpo- lagali s semanjem za daljno poslajevanje.

Če to je treba nadaljevati z nego in z doseganje zaščito vseh teh izredno pomennih vrst listavcev (presvetljevanje in za- ščita a presna) ter raziskovati še učinkovitejše metode dela pri njihovem pospeševanju. (fotografija 8).

Iz grafov 5 in 6 lahko tudi razberemo, da se konkurenčna moč pomesnih vrst listavcev različno spreminja z lego po- potočju navzdol. Optimum bukev nad 6 in 7. ploskvijo, tje okoli 60 m nad studentcem, sledi optimum leske nad 8. plosk- vijo, približno 15 m od studentca, kjer se tla se bolj pre- svetljejo in vlažna. Prav ob potoku pa se kakor povsod do srednjih leg Pobarja, pojavijo javorji.
Podsajene bukke, ki že več kot 20 let životarijo pod zastoro starješega smrekovega sestaja so na presvetljenih tleh ob cesti bajno zaživelje. Če jih bomo pravilno zaščitili in negovali, se bo iz njih razvil poklonski sloj velikega biološkega pomena.

Zanimal me je še vpliv zasrtosti s smreko v zgornjem sloju na uspešnost podsajene buke (graf 7). Zasrtost na raziskovalnih ploskvah sem prikazal s produktem števila dreves - smrek z njihovimi višinami. Pri večjih višinah dreves ob vznožju pobočja je za enako zasrtost potreben manjše število osebkov.

Višino, da je presvetljevanje grmovnega sloja v teh gozdnih za bukev kot utud za ostale listavce dvoreče meč. Na močno presvetljenih jasi, ki se seče s ploskvojo 6, je opaziti sicer povečano vitalnost podsajene buke, vendar pa tuji dosežt močnejše obširanje od divjaci. Na teh mestih pada več snega, vendar tukaj simeta prej skorni. Dalj časa obliža le v senčnem kotu sestaja, kjer je zavarovan pred sončnimi žarki. Tukaj je bukev najdalj časa varna pred ob-
Razvoj podsajene buke je različen pri različnih rastiščnih razmerah na jasi v sestoju (skica 3), odvisno od jakosti sončnih žarkov.

Zato bomo pri gozdno gojitvenih posegih v sesto bolj previdni. Pri pospeševanju buke in ostalih listavcev bomo upoštevali nova spoznanja in njihove zahteve za uspešnejši razvoj. Še naprej proučevali. Iz ugotovitev v nalogi vidimo, da je rahla presežljivost poleg vlažnejših tal, ki se javljajo na nekaterih mestih za njihov razvoj najugodnejša. Listavci so pod rahlo pretrganim sklepon snegom dalj časazaščiteni pred divjadjo, imajo več vlage in dovolj svetlobe.

V teh sestojih, kjer smo toliko vložili za vnašanje in razvoj listavcev, bomo kljub neuspehom v preteklosti nadaljevali z čelom, kjer je smiselno, bomo pristopili k učinkovitjem metodam, tako, da bo dosežen namen in bo zaščitval plnilni sloj, z njim pa tudi v teh sestojih zdesetkana favna.
Tu bo našla več hrane in svoj življenski prostor.
S tem pa bo dosežen tudi manjši pritisk divjadi na
dragocen posledek drevesnih vrst.

Med prostranimi smrekovimi monokulturami ohranjem
bukov gozd z gorskim javorjem (pod Malim Črnim vrhom)
1a. Korelacija med premeri in višinami analiziranih v smrekov debeljak podsojenih bukov

1b. Povprečna višina pri različnih debelinskih razredih
Prikaz uspešnosti podseganje bukve na raziskovalnih ploskvah preko grebena (številčno)

Profil grebena

Z pobočje

nejuspele
uspele

št. os.
50
40
30
20
10

št. pl.
1
2
3
4
5
6
7
8

odm. v m
900
800
700
600
500
400
300
200
100

M: 1:10000

zap. št. pl.
Različnost uspešnosti podsajene bukve; v debelinskem priraščanju se je pričela kazati že cez 2 leti.
Povprečna višina po ploskvah - posreden prikaz vitalnosti

Zgornji sloj (smreka)

Spodnji sloj

Bušček
Leska
Dryženci volčin
Zap. št. ploske
Prikaz uspešnosti podrašje bukve po številu

število vsega

zagornji sloj

spodnji sloj

podrašje bukve

leska
dišeči volčin
rdeči bezegg

graf 6

1 2 3 4 5 6 7 8
Vpliv zastrljosti na podsajeno bukev; zastrl. (hxšt.) smreke, mac, javorja v 1. in 2. sloju.

- število
- višina
4. 2. 1. DELEŽ LISTAVCev V MISLINJSKIH GOZDOVih V OBDOBJU 1954 – 1974

4. 2. 1. 1. DELEŽ LISTAVCev V TREH OBDOBJIH (PO LesNI MASI)
že v uvedu sem osmenil, da so v povojnem obdobju naši gozdar-
ji prešli k prirodnejšemu gojenju gozdov privetnih degradira-
nih smekevih monokulturah, kjer so bile napake človekovega
reševanja z gozdi in še bolj krišeče. Nepredreženi in nenega-
vani smekevi sesto so izkoriščali le 50 % potencialnega pri-
rastka. Nestabilne, čiste smekeve monokulture, s slabokval-
itetnim lesom so bile podvržene mnogim naravnim katastrofam.

Gozdarji so po vojni
organizirano pristopi-
li k naravnejšemu go-
spodarjanju z gozdovi.
Z izgradnjo cest so
omogočili nego in razvoj
mnogih nenegovanih in
odsaknjenih smekevih
monokultur

Fotografija 9
<table>
<thead>
<tr>
<th>Stanje v letu</th>
<th>1954</th>
<th>1964</th>
<th>1974</th>
<th>Cilj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deb raz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 41-12</td>
<td>34.3</td>
<td>34</td>
<td>57.8</td>
<td>41.4</td>
</tr>
<tr>
<td>II 21-30</td>
<td>63.1</td>
<td>52</td>
<td>68.3</td>
<td>94.6</td>
</tr>
<tr>
<td>II 31-40</td>
<td>51.4</td>
<td>40</td>
<td>58.4</td>
<td>38.0</td>
</tr>
<tr>
<td>IV 41-50</td>
<td>22.7</td>
<td>18</td>
<td>24.6</td>
<td>12.5</td>
</tr>
<tr>
<td>VI 51-60</td>
<td>7.9</td>
<td>6</td>
<td>8.5</td>
<td>4.5</td>
</tr>
<tr>
<td>VII 61-70</td>
<td>2.5</td>
<td>0.3</td>
<td>2.6</td>
<td>14</td>
</tr>
<tr>
<td>Σ Enotadni</td>
<td>79.6</td>
<td>68.2</td>
<td>12.5</td>
<td>47.3</td>
</tr>
<tr>
<td>Σ Prebiralni</td>
<td>392.35</td>
<td>26.5</td>
<td>31</td>
<td>294</td>
</tr>
<tr>
<td>Σ Varovalni</td>
<td>23.16</td>
<td>9.2</td>
<td>7</td>
<td>99</td>
</tr>
<tr>
<td>Σ Skupaj</td>
<td>415.64</td>
<td>17.9</td>
<td>31</td>
<td>394</td>
</tr>
<tr>
<td>Obdobja razredni</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Za primerjavo sem dodalše podatke o stanju v prebiralnih in varovalnih gozdovih. Zaradi lažje primerjave in pregleda sem vnesel le vrednosti lesne zaloge v m³/ha, % in površine.

Tabela 1
Po vojni, ko so ti gozdovi prešli v družbeno last so se gozd
jarji odločili "prelomiti" s takšnim veleposrediškim načinom
obnove in gospodarjenja z gozdoi. Opustili so površinski
ostat, umetno obnovo in pospeševanje same ene drevesne vrste.
Naloga in cilj sta jih postala − preiti potom pričetkov kon
verzije v donosnejši, prirodnejši, razvodobni, melani oblikih
gozdov z tendenco povečevanja produktivnosti gozdnih tal ter
povečevanje prirastka. (E)
Pred tem pa so moral gozdarji rešiti še mnoge organizacijske
probleme, objektivne in subjektivne narave.

Kljub velikim potrebam po lesu so zmanjšali etat iglav-
cev in izkoristili del priroste za večanje lesne zalo-
ge na normalnejšo višino. Občem so začeli pospeševati
in z gozdne gojitveni ukrepom pomagati vsem listavcem,
ki so se v teh zistih smrekovih monokulturah kakorkoli
obranili. V najbolj ogrožene sestavi so podsejevali bukev.
Š tem so želeli ustvariti naravnejše zmors drevesnih vrst
in izboljšati bioekološke razmere v smrekovih monokultu-
rah.

Za cilj v prvem ureditvenem elaboratu na Gozdom gospodarstvu
Slovenj Gradec so si postavili 25 % delež listavcev in lesno
zalog 350 m²/ha ter normalnejšo strukturo gozdnega drevesa
po debskih razredih.

Po skoraj 30-ih letih takšnega dela se je stanje v gozdo-
vih Mislinjskega Pohorja že višino izboljšalo. Resultati
naravnejšega gospodarjenja z monokulturami se očitajo v
priloženi tabeli 1, razvidni so iz grafov 8, 9 in 10.

(E) povzeto iz 1. ureditvenega elaborata (3)
Iz tabele 1 je razvidno, da se je lesna zaloga v enodobnih gozdovih, ki jih lahko smatramo za smrskove monoculture povečala za skoraj 91 m³/ha ali približno 46% od prvotne vrednosti. Od 197 m³/ha v letu 1954 se je povečala na 288 m³/ha. Podobno se je povečevala tudi lesna zaloge v vseh obratovalnih razredih skupaj in dosegla vrednost 277 m³/ha.

S tem so se lesne zaloge močno priблиžale zastavljenemu cilju 350 m³/ha, saj zavzemajo že 82% njene vrednosti oziroma 79% v vseh obratovalnih razredih skupaj.

Lesna zaloga iglavcev v enodobnih smrskovih gozdovih je v 1. ureditvenem elaboratu zastavljen cilj 262,5 m³/ha, ki se dosegla in ga celo presegla za 5,5 m³/ha (graf 8 in 9 a). Normalizira pa se tudi struktura lesne zaloge iglavcev po debelinskih razredih (graf 10).

Nanj izrazito je spreminjanje lesne zaloge pri listavcih. še posebno je gibanje lesne zaloge nesadovljivo po letu 1964, ko je njen vrednost celo rahlo upade. Od 15,4 m³/ha v letu 1954 se je njihova zaloga do leta 1964 povečala za 5,4 m³/ha, do leta 1974 pa se njeno stanje sploh ni popravilo in še vedno zavzema vrednost 20,3 m³/ha, kar je le 7% od skupne lesne zaloge (graf 10 a, b). Njihov delež se je celo zmanjšal od 7,8% v letu 1954 na 7% v letu 1974.

Vidimo, da se zaradi visokih zalog lesne masa pri iglavcih veliko močneje kopiri kot pri listavcih. Vendar to ni edini razlog, da se zaloge listavcev od leta 1964 ni povečevala in da je njen delež v primerjavi z iglavci padel.
Vzrokov za to, da se od leta 1964 ne približujemo v 1. ureditvenem elaboratu zastavljennemu cilju lesne zaloge listavcev (graf 10a,b), čeprav je uveljavljanje listavcev v sarekovih monokulturah očitno, je več.

Leta 1954 je bilo veliko mladih sestojev z močnejšim deležem listavcev, ki so prerastali meritveni prag (graf 1). V obdobju od leta 1964 do leta 1974 pa še prevladajo srednjedobni sarekovi sastoji. Zato je priraščanje lesne zaloge listavcev kljub naravnemu izločanju nekajh listavcev v mladih sestojih do leta 1964 močnejše kot do leta 1974. (Močno prehajanje lesne zaloge listavcev in iglavcev nad meritveni prag do leta 1964/7 m³ na ha/ in upadanje do leta 1974/8 m³ na ha - za vrednost 36 m³ ha v 3. debelinski stopnji/ je razvidno iz grafa 10 b. Ta ugotovitev pa se ujema tudi z gibanjem števila listavcev po debelinskih stopnjah v vzorčnih oddelkih -graf IV a).

Listavci v srednjedobnih sestojih se mnogokje nahajajo že v zaposetljenem socialnem položaju in le skromno pri raščajo. Najnov priрастek je umerjen predvsem v višino k svetlobi, kjer se lahko razraščajo in šele potem močno priraščajo v debelino (graf 15, 16, 17). V primerjavi z mladimi sestoji prehaja v starejših sarekovih sestojih nad meritveni prag manjši delež listavcev (graf 15 a). Tudi zato je prirostek lesne zaloge po letu 1964 manjši.
Pomemben razlog stagnantije prirastka lesne zaloge listavcev po letu 1964 pa je izločanje listavcev v srednjedobnih sestojih in starejših pri negovalnih ukrepih, zaradi učvrščanja izbrancev-ohranjenih listavcev v smrekovih kulturnih. Listavci, predvsem bukove, ki jih poleg gorskega javorja z 70% najmočnejše zastopana drevočna vrsta listavcev, se pojavljajo tudi v skupinah, kjer jih je treba ponekod preredčiti. To potrjuje graf IV, ki ponsarja spreminjanje števila listavcev v treh obdobjih od leta 1954 do leta 1974 v izbranih oddelkih mislinjska smrekovih monokultur.

Na povprečno višino lesne zaloge listavcev pa vpliva tudi izsekovanje listavcev na nekaj ha enodobnih bukovih gozdov v višjih legah mislinjskega Pohorja (dozorevajoči sestoji).

Neznaten delež listavcev pa ob vse redkejših ogneščih zaradi kaloričnega lesa seka tudi domačini.
Povečevanje lesne zaloge listavcev in iglavcev v enodobnih gozdovih - smrekovih monokulturah Histonjskega Pohorja v obdobju 1954-1964-1974

Graf 8
Spreminjanje lesne zaloge listavcev (m³) v smrekovih gozdovih mlinjskega Pchorja

15,4 m³ 20,6 m³ 20,3 m³

leta: 1954 1964 1974

Spreminjanje odstotka (%) listavcev v m³ v treh obdobjih do 1954, 1964, 1974

7,5% 6,1% 7,0%

leta: 1954 1964 1974

graf 10a

Stanje leta 1954
Stanje leta 1964
Degansko stanje leta 1974
Cilj-smotno stanje (normalna struktura)

Spreminjanje % listavcev in iglavcev po debeleinskih razredih

graf 10 b
4.2.1.2. DELEŽ LISTAVCEV V TREH OBDOBJIH (PO ŠTEVILU)

Pri raziskovanju zakonitosti vračanja in uveljavljanja listavcev po številu in deležu v mislinjskih smrekovih monokultura so zaanalizo izbrani vzorčni oddelki, ki so bili trikrat premorjeni. To so oddelki: 43a,b; 44a,4b; 46b; 47 a,b,c,d; 47e,f in 48a,b na južnem pobočju ter 61b,c,d,g; 65 b,c,d,e,g; 66/1 a na severnem pobočju mislinjskega jarka. Ti oddelki predstavljajo 10 % površine mislinjskega Pohorja. Analize zbrane in prikazane v tabeli 2.

Iz graf III lahko razberemo, da se pri tem zmanjšuje le število nekajh listavcev (od 8 m.li./ha v letu 1954 na 1,5 m.li./ha v letu 1974). Število trdih listavcev (bučev, javor), ki pridejo v poštev v uveljavljanju v smrekovih kulturah pa raho narašča. Do leta 1964 se je njihovo število povečalo od 21 tr.li./ha na 25 tr.li./ha leta 1964, do leta 1974 pa se je zaradi negovalnih ukrepov pri njihovem pospeševanju in užvrčevanju v smrekovih kulturah zmanjšalo na 22 tr. li./ha.

Ispadanje iglavcev je pri odraščanju v istih sestojih v teh obdobjih dosti močnejše kot pri skromno zastopanih listav-
cih (graf II). Delež listavcev v smrekovih monokulturah se zato povečuje. Od 3,6 % v letu 1954 se je povečal na 4,8 % v letu 1974. Če pa primerjamo delež trdih listavcev, katerih število celo rastlo narašča ugotovimo, da se je njihov delež od leta 1954 povečal od 2,6 % na 4,5 % v letu 1974.

Iz tega lahko povzamemo, da je imigracijska moč avtohtonih listavcev v smrekovih monokulturah mislinjskega Pohorja izredna. Listavci v njih se kljub zaposavljenemu socialnemu položaju in zatiranju pred vojno v starejših sestojih ohranjajo in vse bolj uveljavljajo. Sareka in ostali iglavi pri odraščanju sestojev v medsebojni konkurenci izpadajo, trdi listavci pa ostajajo in se uveljavljajo, njihov delež v smrekovih kulturah se povečuje (graf IV b). Izboljševanje položaja listavcev v smrekovih kulturah in večanje njihovega pozitivnega vpliva je razvidno iz nadaljnjih proučevanj v posameznih razvojnih fazah.

Uveljavljanje listavcev v smrekovih kulturah nam jasno prikaže porazdelitev listavcev po debelinskih stopnjah v posameznih obdobjih (graf IV).

Število listavcev je največje v nižjih debelinskih stopnjah in pada od tretje debelinske stopnje, kjer je najmočnejše za-stopano, proti višjim debelinskim stopnjam. To pomeni, da je največ listavcev v mladih sestojih in v zaposavljenem so-
cisljem položaju v starejših smrekovih sestojih, kjer se ob naši pomoči šele uveljavljajo in kot v mladih sesto-
jih prehajajo nad meritveni prag.

Do leta 1964 zasledimo večji porast števila listavcev do-
kaj enakomerno v vseh debelinskih stopnjah, do leta 1974 pa njihovo število v nižjih debelinskih stopnjah močno upade. Razlika je največja v tretji debelinski stopnji in se zma-
jšuje do sedme debelinske stopnje, kjer zopet pride nad vrednost iz leta 1964 in je nekaj večja v vseh nadaljnih deb.st. (graf IVa) Od 7. deb.st. naprej se število listavcev zaradi prehajanja uveljavljenih list. v višje deb.st. normalno poveščuje vse od leta 1954).

To je razumljivo, saj je bilo v oddelkih, ki jih spremljamo, po letu 1954 zaradi slabših sestojev prehajanje nad meri-
tveni prag močnejše kot po letu 1964. Zaradi odrašcanja teh sestojev se število v nižjih debelinskih stopnjah po letu 1964 zmanjša. V višjih debelinskih stopnjah pa se zaradi uve-
ljavljanja listavcev v starejših sestojih rahlo poveča.

Podobno kot v mladih sestojih se z listavci dogaja tudi v starejših smrekovih sestojih. Listavci v nižjih debelinskih stopnjah se mnogkje nahajajo še v zapostavljenem socialnem položaju. Pri njihovem pospeševanju se jim je najprej zašelo pomagati s presvetljevanjem in jačanjem njihove vitalnosti. Njihovo število se tako ni zmanjševalo, ampak se je zaradi prehajanja nad meritveni prag povečevalo. (Za utemeljitev

Čeprav se število listavcev po letu 1964 ne povečuje, opazimo močno sveljavljanje listavcev v smrekovih sestojih. To nam ponazarja in dokazuje graf IVb. Iglavci pri odraščanju obravnavanih sestojev (v izbranih oddelkih) izpadajo, listavci pa ostajajo. Delež listavcev se vidno povečuje, izboljšuje pa se tudi njihov položaj v smrekovih kulturah. S tem raste pomen listavcev za izboljševanje rastiščnih pogojev v sestojih in naravnejše zgradbo mislinjskih gospod.

Podobno, kot za izbrane oddelke pa lahko zaključimo tudi za smrekovne monokulture celotnega območja mislinjskega Pohorja.

Do leta 1964 je bilo na območju mislinjskega Pohorja veliko več mladih sestojev z veljko deležem listavcev, ki prehajajo nad meritveni prag, kot do leta 1974 (graf 1). (Leta 1954 je bilo na območju mislinjskega Pohorja 64 %
1720 ha/ smrekovih monokultur/enodobni in raznodobni
gozdovi/ starih do 60 let oziroma 36 % mladih kultur sta-
rih do 40 let. Leta 1974 pa je mlajših sestojev do 60 let
starosti le 41 % /1210 ha/, oziroma 25 % mladih smrekovih
kultur starih do 40 let). Iz navedenih podatkov lahko raz-
beremo, da se je delje mlajših smrekovih sestojev do 60 let
starosti od leta 1954 do leta 1974 zmanjšal za 22 % vseh
smrekovih monokultur, ali za 11 % pri mladih kulturah do 40
let starosti.

Prav tako, kot pri analiziranih oddelkih, prihaja do močnej-
šega izločanja listavcev pri nagovornih ukrepih tudi v vseh
ostalih sestojah.

Velik delež listavcev v nižjih debelinskih stopnjah
(v mlajših sestojih in v spodnjem sloju v starejših sestoj-
jah, kjer preraščajo meritveni prag) in močnejši delež mlaj-
ših sestojev do leta 1964 nam potrjuje tudi razporeditev
lesne zaloge listavcev v enodobnih smrekovih sestojev mi-
slinjskega Pohorja (graf 10 a in b).

 Razvojni trendi v mislinjskih
smrekovih monokulturah (prognoza)

Na podlagi ugotavljenih razvojnih trendov v mislinjskih
smrekovih monokulturah, občutnega deleža listavcev v mlaj-
ših sestojih in vse večjega deleža listavcev v starejših sestojih lahko predvidevamo, da bo v bodoči delež in poren listavcev v mislinjskih gozdovih še narasčal. Ko nam bo uspelo pomladiti sedanje srednjedobne smrekove sestoje s posameznimi listavci, boje mislinjski gozdovi dobili svojo naravnejšo podobo in željeno zgradbo. Ustrezen izmes, predvsem smreke in bukve, ki nam naj bi zagotovila gospodarsko in biološko stabilnost teh gozdov, pa bomo doseglili z zadostnim poznavanjem zakonitosti pri naravem pomlajevanju in uveljavljanju listavcev. Pri premeščanju smerekovih monokultur v naravnejše, mešan gozd je moramo opreti na naravne danosti, to je na obsežnejše listavce. Izkristiti moramo njihovo vlogo pri pripravi tal in semerskega potenciala za pomlajevanje. Ugotoviti bomo zorali pravilno pomlajevalno tehniko (male jase in vrvze) in rešiti probleme, ki pri tem nastopajo. Predvsem v sodelovanju z lovci se pokuša s pronovljenimi ukrepi urediti odnos med gozdom in divjedjo. Pri pomlajevanju pa moramo upoštevati tudi tiste živalke vrste, ki pomlajevanje pospešujejo (to so prenasadliči/ptice, gledalci/nekaterih avtohtonih vrst listavcev).

Doba pomlajevanja sedanjih srednjedobnih sestojev lahko traja tudi 60 let (graf I), če hočemo zagotoviti trajnost donosov na območju mislinjskega Pohorja (daljša pomlajevalna doba zaradi prenosa etata iz močnejše zastopanih).
srednjedobnih sestojev v obdobje nizkih lesnih zalog sedanjih starejših sestojev in akromno za-
stopanih mladih sestojev). Doba posnajevanja pa lahko traja tudi manj časa (40 let), če bi pomla-
dili vse srednjedobne sestoje naenkrat.

Na podlagi ugotovljenega stanja in spoznavanja raz-
vojnih trendov lahko predvidevamo, da bodo gozdovi mislinjskega Pohorja dobili svojo naravnejšo zgra-
dbo čez približno 90 let oziroma 70 let.

Ostanek avtohtonega gozda s smrekovimi monokultu-
rasi v ozadju, v Mislinjskem jarku pod Roglo (Paurovo)
Starostna struktura gozdov maslinjskega Pohorja (enodobni in raznodobni smr. gozdovi - smrekove monokulture)

leta 1954 - 2750 ha (76%)
leta 1974 - 2933 ha (81%)

norma 488 ha

489 ha

graf I

starostni razredi
Spreminjanje števila listavcev in mehkih listavcev v treh obdobjih mislinjskih smrekovih monokultur v izbranih oddelkih - 10% površine

Procentualni delež listavcev v smrekovih monokulturah v treh obdobjih
Spreminjanje števila trdih listavcev od leta 1954 v smrekovih monokulturah (vzorci oddelki -10% površin vseh gostev misl. Pohorja)

Spreminjanje deleža (%) listavcev v izbranih odd. smrekovih monokultur po deb. st.

- - - stanje 1954
- - - stanje 1964
- - - stanje 1974

graf IV b
4. 2. 2. UVELJAVLJANJE LISTAVCÖV V LJEVENJAKIH, DRUGOVJAKIH IN DREBLOOKIH V MISLINJAKIH ŠMARNOVIH MONOKULTUR

4. 2. 2. 1. USPEŠNOST LISTAVCÖV V MISEMIŠNJEM ŠMARNOVEM SESTOJU (GOŠČI - LJEVENJAKI), Kjer so je listavcem pri obrovi poragalo od vsage začetnik

Sarekova gošča - levenjak na Jauhovi frati je bile osnovana v povojnem obdobju, ko so gozdarji preželi k prirodnejšemu gojenju gozdov. Listavcem, ki so se pojavili med posajenimi azekami, so se pri negovalnih ukrepih povečale enake pogo.

Po skoraj 30-ih letih takšnega dela so vidni že nekateri vsespodbudi rezultati. Med posajenimi azekami so se bujno uveljavili listavci, kar nam potrjujejo analize.

Analize podatkov zbranih na raziskovalnih ploskeh Jauhove frate prikazuje tabela 3 ter graf št.1 in 2.

Število osebkov posameznih vrst v zgornjem in spodnjem slo-

<table>
<thead>
<tr>
<th>sloj</th>
<th>sp</th>
<th>%</th>
<th>sp</th>
<th>%</th>
<th>sp</th>
<th>%</th>
<th>sp</th>
<th>%</th>
<th>sp</th>
<th>%</th>
<th>zg po</th>
</tr>
</thead>
<tbody>
<tr>
<td>sloj</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>sloj</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>sloj</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>sloj</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>sloj</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>sloj</td>
<td>40</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>sloj</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>sloj</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>46</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>sloj</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>sloj</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>56</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabela 3
Najprej nas je zanima pristnost listavcev v zgornjem sloju, ki raste in se razvija. Naš cilj je, da bi bil to zdrav, kvaliteten gospodarski gozd, ki ga pogojuje naravna zmes listavcev in iglavcev.

Iz analiz lehko razberemo, da je v zgornjem sloju Jauhove gozde letejši, a v primerjavi z Voglje je zgornji sloj 33,9% listavcev, ostalo je smreka in se kakšna reaks, osamela jelka (9,5%). Od teh listavcev je 23,6% listavcev z napredujočo tendenco, ki se skupaj z iglavci razvijajo v odraslo stodo; ostalih 10,3% pa so pionirsko vrste, predvsem vrbe, ki so se po vsej na novo osnovani franci v začetku močno uveljavile, zdaj pa v borbi za prostor in svetlobo že zaostajajo in se utapljajo med drugimi bolj konkurenčnimi vrstami. V zgornjem sloju je od listavcev z napredujočo tendenco kar 81,8% Bukve, 12,7% Javorja ter ena čočka, treba in vrba. Če štejemo v zgornji sloj samo te osebke, vseh listavcev 26,3%, od tega je 21,5% Bukve.

Ti podatki so za nas zelo razvereljivi, saj nas zagotavlja naravna zmes različnih drevesnih vrst in s tem stabilnost gozda v gospodarskem in biološkem smislu. Poleg tega pa kažejo veliko migracijsko moč na tem področju.

Da bi dobili odgovore še na nekatera posebna vprašanja o migracijskih moči prazemnih drevesnih vrst nas zanima tudi podatki o njihovem stanju v spodnjem sloju in v obeh slojih skupaj.

Od vseh osebkov ugotovljenih na raziskovalnem ploskveh je 32% listavcev in 68% iglavcev; od tega jih je 67% v zgornjem sloju in 33% v spodnjem odmaralnem sloju. Zanimivo je, da so odstopanja od te vrednosti v spodnjem sloju pri posameznih vrstah zelo majhna in le pri bukvi večja. To kaže na neliključno moč, saj je v spodnjem sloju pristna na najmanjšem deležem.

V spodnjem sloju je 29,8% vseh listavcev in 34,5% vseh iglavcev – smrek (le 0,4% je jelke). Od skupnega števila osebkov v spodnjem sloju je to 29,6% listavcev in 70,4% iglavcev. Teh 29,6% listavcev tvori 12,3% Bukve, 10,4% vrbe, 2,6% Javorja in 4,3% ostalih listavcev, kot je breza.
Vidimo, da je v spodnjem sloju okoli 4 % manj listovcev kot iglavcev, ki jih temu, da so med listavci tudi pionirske vrste, ki v zaščitnih smestjojih niso dolgo konkurenčni in že močneje izpadajo. To nakazuje, da so iglavci manj vitalni in močneje izpadajo kot listavci.

Ker nas podrobnejše zanima vitalnost in konkurenčna moč posameznih vrst, ki so v tej gošči močneje zastopane, sem primerjal delež smreke, bukve in vrbe zaostale v spodnjem sloju. Na raziskovalnih ploskvah je v spodnjem sloju ugotovljeno 34 % smreke, 23,7 % bukve in 33,3 % vrbe.

Več kot 10 % manjši delež bukve kot smreke v spodnjem sloju je podstek, ki je ob 21,5 % delež bukve v zgornjem sloju upoštevanja vreden. Če upoštevamo še naravno nasmešitev bukve, ki se je morala v umetno osnovanem smrekovem sestavu šele uveljaviti, lahko trdimo, da je bukev na tej frektni najbolj vitalne drevesne vrste.

Delež vrbe v spodnjem in v zgornjem zaostajajočem sloju dokazuje njihovo veliko življenjsko moč v začetnih sukcesijah na tem področju nasmeščajočih sestavev. Vendar ta vrsta kasneje v konkurenčni z drugimi drevesnimi vrstami odpeve, kot vse druge sveži oltarne pionirske vrste. Pustrost teh redkih pionirskih vrst bi morali bolj obremeniti — povsod, kjer je to dopustno. Vemo, da so te vrste avtomornih listavcev prav tako kot ostale močno iztrebljere, za gozd pa izjemno prav tako velik pomen. Razpolagajo s potencialom semena, ki ga lahko veter premaga na večje razdalje, na zelo nedostopna in ekstremna rastišča. Ob morebitnih naravnih katastrofhah, ki so v teh lobilnih pohorskih monokulturnih vedno možne, lahko te vrste hitro in povsod skočijo in zarastajo raskrita in ne-stabilna gozdna pobočja. Zavarujejo jih pred erozijo, obstanem pa omogočijo razvoj naravnih sukcesij.

Pripominjam, da so bili zaradi negovalnih ukrepov — čiščenja gošče, nekateri osebni praktikami že izloženi in jih pri analizah nisem mogel zajeti. Iz analiza svežih štartov je razvidno, da med nji že preljudujejo pionirske vrste z 58 %, od te-
ga je kar 44 % vrbe, 10,9 % breze in 3,6 % jelke; 15,3 % je bukve in 29 % smreke.

Tako prihajamo do sklepa, da se listavci po vsej frati močno uveljavljajo; 33,9 % listavcev v zgornjem sloju iz ostali po-
kazatelji to zgovoroma potrjujejo. Vprašujemo se, kje je skriv-
nost uspeha, ki nas ohrabruje v času pred obnovo degradiranih
smrečnovih monokultur v naravnejši gospodarski gozd. Velika
splosnoba vprašanja listavcev na svojo avtohtone rastišča
in manjša vitalnost umetno pogodene smreke, ki je tuje pro-
vice, je gotovo eden glavnih vzrokov uspeha listavcev. Nji-
hova vitalnost pa ugodna lega bolj vlažnega SV pobočja še
porejša. Priročnost Juhevega gozda, kot baze in izhodišča
avtohtone flore in favne ima pri tem pomembno vlogo. Šivali,
ki se v njej zadružujejo, od tem raznajšajo sevanje avtohtone
vegetacije. Na frati se pojavi celo česnja, kar kaže na velik
pomen favne pri poslabševanju listavcev. Fomč pri gozdnem go-
jitvem je bilos listavcem pri uveljavljanju samo v
korist in uspeh še povečala.

Na večji delu listavci vpliva tudi naravnejše gospodarje-
je s tem nasadom od vsaga začetka. Pri obnovi gozda, s po-
žiganjem sočnih ostankov niso uničili tal in zavirilo tlosov-
nih procesov. Med posajenimi smrečami so tako listavci lažje
zaživele. Kakšen pomen ima takšna naravnejša obnova, priču
skrajni del frate na 9, ki je bil pri obnovi požgan in nato
posejane. Na poročini l ha se listavci skoraj ne pojavljajo.

Mogli pozitivni rezultati nas vpodobijo, da bomo s takš-
nim naravnejšim gospodarjenjem nadaljevali in ga še bolj raje
ziskali. Ni še raziskano, kakšen delu listavcev maj bi bil
prisoten v poborških gozdovih, vendar moramo v tem primeru
dopuščati možnost, da se avtohtoni listavci prekozemeno raz-
Vijejo. Na račan poročene smreka, ki močno je izpa da se veča
delu listavcev, predvsem bukve s pozitivno tendenco v zgorn-
jenjem sloju gožci - letenjenjem. Zaradi tega jih ne smemo iz-
sekvati. Upoštevati moramo ne samo gospodarski pomen nasta-
jočega gozda, ampak tudi njegov širši pomen za biocenoto.
vtohtona flora in fauna se tuhaj krepita in najdeta svoj rveljeni prostor, ki postaja izhodiše za zdravljenje po-
letnih monokultur ter obstojo naravnih gospodarsko in biolo-
isko stabilnih gozov.

Ker me je zanimala razporeditev in vitalnost drevesnih vrst na hrani, sem primerjal stanje na posameznih ploskvah obeh raziskovalnih linij.

iz grafav št.11 in12 je razvidno, da delež listavcev v zgorn-
jem sloju in število osekov ni po vsej površini enako moč-
no. Vrednosti se spreminjajo z lego po izchipsi in pačnici.
Opazimo, da je delež listavcev z naprejščo tendenco naj-
močnejši ob potoku, na sredini pobočja je nekoliko manjši, po Jauhnim kmečkim gozdom na grehenu pa je znot velj.
če pa upoštevamo še pionirske vrste-vrbe v zgornjem sloju, je delež po vsem J delu pobočja enakomernejši.

Gotovo je, da na pojav listavcev vplivajo mnogi ekološki fak-
torji, zopet pa je očitno, da njihova vitalnost zavisi od vlaž-
nost rastišča. To potrjuje močnejši delež ob potoku in na najbolj vlažnem proti S obrnjenemu J delu pobočja. Ker vla-
ga na tej lati ni v minimumu, ta odvisnost ni tako močno opazna, saj ime vsa površina zelo ugodno vlažno SV lež.
močnejši delež listavcev pa opazimo tudi pod grebenom, in česar lahko sklepamo, da manj neposredno vpliva Jauhn kmeč-
ki gozd s svojo naravno jelovo-bukovo zmesjo.

Pri presočevanju pionirskih vrst ugotovimo, da se te vrste močno priotene v nižjih razvojnih fazah. To se jasno odraš-
ne ploskvah št. 2, 3 in 5, ki imajo najšvečeje število osekov in temu najbolje ustrezajo. Z nadaljnšim razvojem sestaja pa vsebolj izpadajo. Domnevamo, da so pionirji prav tako kot obsto-
lili listavci na bolj vlažnih mestih in ob potokih vitalnejši in se močnejše pojavljajo. Od listavcev se uveljavlja iz obra-
žnajo le bukve in redki javorji. Z razvojem pa se zmanjšuje tudi število samek, tako da delež listavcev raste. Starejša razvojna faza nakazuje manjše število osekov (ploskev 6,4,7).
Vpliv avtohtonega Jauhovega gozda na delež listavcev v bližini gošči - letvenjaku

Jer nas podrobneje zanima vpliv naravnega jelovo-bukovega gozda na delež listavcev v smrekovi gošči - letvenjaku ter način vzrašanja listavcev v njo, sem od robe Jauhovega gozda na greben proti notranjosti Jauhove frate, po pobočju navzdol dolgo - čil progo široko 4 m in dolgo 16 m (vrisano v karti). Na njej sem na vsaka 2 m ugotovljal število osebkov gožnega drvečja v zgornjem sloju z nepredčujočo tendenco. Proga prehaja iz naravno pomaljene smrskove-bukovego mlađja ob robu Jauhovega naravnega gozda v goščo in neposredno naprej, v mlađi smrekovi letvenjaka na frati. Pogledek ob robu gozda se šranja, kljub temu, da ga z običajenim ogroža divjad. Haja upotrebno osnovane Jauhove frate ob kmečkim gozda ni razločna. Senza avtohtonega gozda vpliva na počasnojastro osebkov ob robu gozda in s tem na nižje razvojne faze gožnega drvečja.

Potrebno bi bilo več preg, da bi ineli dovolj podatkov, ki bi jasno pokazali apermanjane števila osebkov v zgornjem sloju proti notranjosti Jauhove frate. Na podlagi podatkov zbranih za te progi pa lahko vseeno pridemo do nekaterih važnejših spoznanj in zaključkov.

Iz analiz ugotovimo (graf 13), da se % listavcev proti notranjosti gošče v zaščitku močno veča, na določeni razdalji potem ohra nje svoje varnost od 43 - 72 % in se naprej postopoma spušča k normalnemu deležu listavcev na Jauhovi frati. Zaključimo lahko, da je neposreden vpliv Jauhovega gozda očit in je najjačnejši nekako do 20 m pod grebenom, potem pa počasi pada in se normalizira. O presečnem vplivu na delež listavcev v gošči - letvenjaku sem že spregovoril.

Vzrok povečevanja deleža listavcev z razdaljo pa ni samo povečevanje števila bukovih osebkov v zgornjem sloju, saj se delež povečuje še ob enakem številu osebkov. Vzrok temu je
izredna vitalnost bukev, ki se ohranja v vseh razvojnih fazah, ki se pojavnijo v smeri proti notranjosti Jugove fra- te, medtem ko smreka izpada in se njeno število zmanjšuje. Gosto raste smreke, ki jih je v mladju največ, vse bolj iz- padajo. Ohranja se le najbolj vitalne - tiste, ki vzdrže v medsebojni konkurenci in, ki lahko v borbi za svetlobo snuko- vredno konkurrirajo bukvi.

Na podlagi tega lahko predpostavljamo, kako bi potekal raz- voj in uveljavljanje listavcev v naravno pouslanjih pohorskih gozdovih. Danes, ko večina umetno osmešenih smrekovih monokul- tur začenja dozorovati, moramo, o tem nujno razmišljati, naj igrata pomajevanje in njegov razvoj pri preobrazbi v naravno- ši smreko - bukov gozd bistveno vlogo.

V degradiranih smrekovih monokulturah je pojav poslada zelo otežen. Kjer pa se že pojavi, na njegov razvoj v začetku močno vpliva dirjad, ki ga ogroža z obširanjem. Tukaj je predvsem zanima, kako bi bil posladek uverovan pred uniče- njem in bi udel v višine varne pred obširanjem.

V prejšnjem poglavju smo videli, kako se poslajena bukev, ki je pri obširanju najbolj prizadeta vsakodnevna obradba, ohranja in na novo poganja iz popkov začetnikeh sez strklji odgriz- njenih vajec.

Na podlagi tega lahko predvidevamo, kako bo potekal razvoj naravnega poslagala ob prisotnosti divjad, kater stašle leh- ko v obrovitveni dobi večine pohorskih monokultur nekoliko zmanjšamo.

Zaradi mnogih posladitvenih dajal, ki jih bomo osnovali in pridalne vegetacije na njih, bo obširanje poslagala bolj po- ranjeljeno in ublaženo. Listavci, predvsem bukev, ki se o- hranja danes v teh teških pogojih, se bo ohranila tudi ta- krat, če se bo pojavila. Smreka pa se bo po vsej verjetnosti pojavila že veliko močneje, ker je bo veliko, bo manj otro- žena kot redki listavci, kasal bo zaživela, se razrastla in zgodila. Ustvarjala bo vse bolj neprehodno goščo. Vitalni avtohtonist listavci, predvsem bukev, ki se bodo pojavili med
njo, bodo vse bolj zaščiteni in vedno manj otžirani, vse dokler divjih ne bo mogla več do njih. Takrat bodo zaživeli in se še bolj razrastli. Kot veemo se potem na račun smrek, ki jih bukve izpodi in ki izpadajo v mejnorodjen konkurenci, delež listavcev sorazmerno še povečuje.

Zamišljen razvoj posladka

![skica 4](image1)

![skica 5](image2)

![skica 6](image3)

Z nadaljnjim razvojem v goždi se povečuje delež listavcev *bukve* na račun smreke, ki izpada.

Ko rešimljamo o posmajevanju, smo zahtljeni tudi zaradi redkih listavcev, ki naj bi razpolagali s svojim serenom pri posmajevanju naravnega gozda. Skrbi nas, če se bo v težkih okoliščinah v degradiranih sreškovih monocultures posmade spleč pojavil. Bojimo se, da zaradi surovega humusa sene ne bo vkljuno in če bo, da ga bo zarastla trava.
Spreminjanje števila osebkov na raziskovalnih ploskev v zgodovini.

spodnjem sloju Jauho, ve frale

Polek raz. linij

graf 12

smreka
bukev
javor
pionirj
vtbe
jeleka
na ta vprašanje nem skušal odgovoriti v poglavju 5.

V smreki golj - letvenjaku, osnovani na bolj vlaščem SV po- božju Jehove šraste opazno izredno vitalnost bukve in ostalih listavcev, ki se so močno uve- ljavili (v ozadju črni vrh).
Spreminjanje števila in % listavcev-bukve v zgornjem sloju gošče-letvnjaka z oddaljenostjo od avtohtonega jelavo-bukovega gozda.
1. 2. 2. UVELJAVLJANJE LISTAVČEV V SREDNJEDEŽEBNEM SREDNJEDEŽEBSKEM DROGOVNIKAH

Proučevanje imigracije na raziskovalnem objektu J-II v srednjedežebnem drogovnaku nam potrjuje ugotovitve iz prejšnjih poglavij.

Iz grafa 14 vidimo, da se tudi tukaj listavci obravnavajo in močnojo pojavljajo na bolj vlažnem in hladnejšem pobočju. Najmočnejše so pojavljajo na tistem območju pobočja, kjer širínok zaobljen greben Briške prehaja v strmo. Na teh, še ne prestranih mestih, se v teh zadržuje več voče, ki povečuje vitalnost listavcev.

Na bolj strmemem pobočju pa voda po plasti surovega humusa hitro odteče do potoka, kjer se pojavijo listavci, predvsem javorj z večjimi dimenzijami.

Da so listavci na V pobočju močnojo uveljavljajo nam potrjujejo tudi meritveni podatki. Pri primerjavi srednje deževnih sestojev v oddelkih 44/I a in 44/II a, ki pokrivata oz oz. V pobočje Briške vidimo, da je na V pobočju 7,6% listavcev po številu in 4,6% po volumnu, na Z pobočju pa jo 28% po številu in 1,1% po volumnu. Skupno je v obeh oddelkih ugotovljenih 11,25 m² listavcev na ha, to je 25,5 drezes ter 403 m² iglavcev na ha, kar je 492 drezes.

Iz teh podatkov vidimo, da je za 1 m³ listavcev potrebnih več dreves kot za 1 m³ iglavcev. Sklepamo lahko, da je še veliko listavcev v zapostavljenem položaju v nižjih debelinskih in višinskih razredih. To nam potrjujejo podatki analiziranih osebkov (graf 15).

Iz nekaj podatkov zbranih na raziskovalnih ploskvah lahko dobimo le orientacijske pokazatelje.
vidimo, da je le manjši delež listavcev z iglavei v enako-
vrednem položaju. Ostale so v nižjih debelinskih in višjih
rasredih, nekaj pa jih je tudi še pod klupašnim pragom. Od
ugotovljenih listavcev je 71% bukve in 29% javorja.

Vsak listavec v spodnjem sloju smrekove monokulture obli-
ka je izredna vitalnost. Ohranja jih velika sposobnost obna-
žati se v senci. Viške in visoke bukve in celo javorji živo-
terijo med leto nimajo snežka in vsako vzdajnje vseživejo. Ti osebki so se ponekodu ohranili tudi kot pamjavniki in rastejo v šopah.

Iz grafa 16 in 17 vidimo, da v debelino le slabo preražčajo
in da je skoraj ves njihov pri raz in usmerjen v višino k slet-
lobi. Bukve s premerom 9 cm lahko imajo višino 18 m in
javor s premerom 7 cm 10 m. Mnoge bukve so pri tem opirajo na
sreke okoli sebe in nimajo več lastne stojenosti. Če je,
ko dozirje krožnja listavca zgrnči sloj in se tem razraste,
se debelniki pri razstek poveča. - Debelo se ojača. Zamislico je,
da se med temi osebki poleg bukve tudi javorji, ki so sicer
bolj znani po svoji svetlotlubnosti in nepoobstoječnosti v senci.

Če bočno tem listavcem ponskat s svetlitvenim redčenjem,
se mora biti zelo previdni, da jih temu ne odvzememo opore.
Erazemove se krožnja na viških in slabotnih debelnih listavcev
povejajo k tlom. Pri bukavah, ki so takšne poleg pa opasima,
da se vselena pa posušijo in na novo ožarejo. Le z rahlim
presvetlitvanjem - v posekem drves, od katerih ogoršeni
listavci riste neposredno odvimi lahko požasti ojačamo njihov-
vo stabilnost in jih spravimo v zgrnči sloj.

Na negovalne ukrepe s svetlitvijo hvalačno reagirajo samo
lebnajša drvena bliza zgrnčega sloja. Na svetlobi se bitro
razrastejo in kažu zatem začnejo tudi sereniti.

Ti listavci imajo za gozd zelo velik pomen, saj večajo njegovo
stabilnost in volocnost, veliko moč, ohranjajo redko
fazno, z svojim opadom pa izboljšujejo tudi tla v neposredni
obližini.
še večji pomen pa bodo imeli ti listavci pri obnovi pohorskih monokultur v naravnejši gozd, saj nam bodo s svojim semenom zagotovili posmijevanje mešane smesi listavcev in iglavcev.

Pomen in vpliv teh listavcev sem podrobneje prikazal v poglavju 5.

Narava nam sama kaže, da smrekove monokulture na tem območju niso naravna tvorba in, da so njeni "cilji" drugačni (Paurovo)
| Sloj od jarka h grebenu na raziskovalnih ploskvah v smrekovem drogovniku |
|-----------------------------|-----------------------------|
| listavci | smreka |
| macesen | |
Porazdelitev listavcev in iglavcev po dobelskih stopnjah

Porazdelitev list. in igl. po visinskih razredih na raziskovalni objekt J-I
4. 2. 3. POJAV LISTAVCEV V SMREKOVEM DEBELJAKU

V smrekovem debeljaku, kjer sem analiziral razvoj podsajene bukve in ostalih listavcev, sem ugotovljal tudi prisotnost listavcev v drevesnem sloju.

Na raziskovalnih plockah in drugod v smrekovem sestoju opazim le redke listavce. Pojavljajo se prej tako na mestih, kjer so podsajene bukve in ostali listavci v grnovem sloju vitalnejši, kar samo potrjuje ugotovitve iz prejšnjih poglavij.

Na aceretalnih rastlinskih ob potokih se pojavijo javorji z večjimi prirastki in posamečno še količna bukev. V sestoju proti glebobi se potem opazijo več, opazim jih le še ob v zemlj vsekanem kolovozu, kjer se na bolj presvetljih in vlažnih tleh posamečno pojavljajo bukeve.

Njisko zaostanost listavcev v starejših smrekovih sestojih naplohom si lahko razlagamo kot posledico veleposestniškega načina gospodarjenja v protoklasti. Ti sestoji so bili v času intenzivnega gojenja monokultur še toliko prehodni, da so lahko iz njih izsekovali listavce.

Manjši delež listavcev pa opazimo tudi v smrekovih sestojih ob domačijah, kjer jih domačini izsakujejo za drva.

Omenjam še, da na vlažnejših s pobočja Mšlinjskega grabija opazim bolj enakoosmo razporeditev listavcev v sestojih in njihovo manjše odvisnost od vlažnih aceretalnih rastlinskih po potokih.
5. POMEN UVELJAVLJENIH LI-
STAVECV V SMREKOVIH MONO-
KULTURAH ZA TLA IN POMLA-
JEVANJE

5. 1. PRIMERJAVA TALNIH LASZNOSTI V NARAVNEM BUKVEM
GOZDU S TLEMI POD SMREKOVU KULTURO TER POD LI-
STAVECVEM V SMREKOV KULTURI

Različni avtorji, ki so proučevali vpliv čistih enodobnih sestojev smreke na tla, navajajo spremembe v tleh, ki povzročajo, da postanejo tla manj rodovitna.

Smreka običajno plitvo korenini in črpa hrano iz površinskih talnih horizontov, ki zaradi tega postajajo revnejša z rastlinsko hrano, zlasti še tekrat, ko so tla že revna s hrano. Sarekeve iglice, ki tvorijo gozdni opad, vsebujejo manj elementov hrane v primerjavi z opadom v listnatem gozd. Vsebujejo pa več drugih spojin, ki ovirajo razkrog opada. Raziskovalci so ugotovili, da po stanejo tla v smrekovih kulturah degradirana: stopnja zaskicanosti je večja, prirodno krošenje hranil je manjše, oblika humusa je pretežno surov humus, mineralizacija organske snovi je počasnejša, zmanjšuje se tudi biološka aktivnost tal.

Z namenom, da bi raziskali spremembe v tleh, ki so nastale s smovanjem čistih smrekovih kultur za območje mislinjskega Pohorja, smo na istem J pobočju, pod malim Črasm vrhom izbrali 4 različne objekte in sicer:

1. objekt - v naravnem bukovem gozdu (debeljak) s posameznim javorjem, v nadmorski višini 1410 m z južno eks pozicijo in nagibom 30 – 15 %
2. objekt - približno 60 let star smrekov nasad (drogovnajak), 50 m V od prvega objekta z nadmorsko višino 1420 m z nagibom 10 – 15 % in JV ekspozicijo

3. objekt - v smrekovi monokulturi (debeljak) s posameznimi bukvijo in posameznim gorskim javorjem v nadmorski višini 1270 m z nagibom 10 % in JV ekspozicijo

4. objekt - približno 80 let star čist smrekov nasad (debeljak) približno 100 m JZ od objekta št. 3 z nadmorsko višino 1270 m, z nagibom 10 – 15 % in JŽ ekspozicijo.

V vsakem objektu smo izbrali mesto s približno izenačenimi rastiščnimi pogoji in izkopali talni profil. Poleg opisa morfoloških lastnosti talnega profila smo vzeli tudi vzorce za laboratorijske analize. V vseh štirih primerih se pojavlja isti tip tal, to so kislo rjava tla.

KISLA RJAVA TLA (DISTRIČNI KAMBISOL)

Kisla rjava tla so se razvila na magmatskih in metamorfnih kameninah (tonalit, biestniki, gnajsi), ki se pojavljajo na tem območju mizinjskega Pohorja.

Morfološka sgraba talnega profila v smrekovi monokulturi s posameznimi bukvijo (objekt 3) je slednja:

Ol - horizon, 0 - 1 cm, rahel do plastovito stisnjen sloj gozdnega opada (pretežno smrekove iglice, posezane z bukovim listjem)

Oh - horizon, 1 - 2 cm, rahel do nekoliko stisnjen, drobljiv, zrastči s drobno grudičast, prhinastra, gosto prekorenjen, v zelo redkih deževnikih, odceden, jasno prenaža v Ah - horizon

Ah - horizon, 2 - 10 cm, stisnjen, drobljiv, drobno grudi-
čast, malo skeletoiden (0 - 20 % skeleta), sprsteni-nast, gosto prekorenjen, odceden, neizrezito preha-ja v Bv - horizont
Bv - horizont, 10 - 58 cm, stisnjen, drobljiv, drobno do
debelo grudičast, malo skeletoiden, redko in enakomer-no prekorenjen, odceden, postopoma prehaja v
Bv2- horizont, 58 do 85 in več cm, stisnjen, lomljiv in
drobljiv, drobno do debelo grudičast, močno skeleto-
iden (do 50 % skeleta) z posameznimi koreninami, od-
ceden.

Tla so srednje globoka do globoka, melasto ilovnata do ilovnata, sveža, biološko malo aktivna, s posameznimi de-
ževniki, z majhno katjonsko izmenjalno kapaciteto in z za-
dovoljivo produkcijo sposobnostjo.

Morfološke lastnosti tal

Pod naravnim bukovim sestojem imajo tla približno 15 cm
globok sprsteni-nast Ah - horizont brez površinskega sloja
priline. Na tistim pa se zaradi velike pokrovnosti (Luzula
maxima) pojavlja na površini do nekaj mm debel sloj slabo
razkrojenih in močno fermentiranih odmarih organskih
ostankov, ki ga označujemo z Oh - horizontom.

Pod smrekovima monokulturama (na zgornjem in spodnjem pro-
filu) opažamo med O1 in prhlinastim Oh - horizontom prib-
ližno cm debel Oh - horizont, ki ga sestavljajo malo raz-
krojeni ostanki gozdnega opada.

Navedena odstopanja od opisanega talnega profila pod smre-
kovo kulturno s posamezno bukvijo so razvidna v priloženem
shematskem prikazu morfološke građe talnih profilov.
Fizikalne lastnosti tal

Iz podatkov analiz štirih talnih profilov je razvidno, da so si šla po teksturi zelo izenačena, saj je ravno delež gliniastih delcev v Bv - horizontu, ki so za talne lastnosti najbolj pomembni, v vseh štirih primerih skoraj enak (od 22,1 - 24,2 %).

Tla pod naravnim bukovim sestojem se po teksturi v organsko mineralnem Ah - horizontu ločijo od tal pod smekevo mono-kulturo. Pod bukvijo je močneje izražena gudičasta struktura za razliko od tal pod smeke, kjer prevladujejo zrastni strukturni agregati. Tudi v smekevotem sestoju s posamezno bukvijo v Ah - horizontu prevladujejo gudičasti strukturni agregati, kar je razvidno iz tabele.

Kemične lastnosti tal

Podobno kot smo ugotovili za teksturo velja tudi za kemične lastnosti mineralnih horizontov (Bv, BvC), da so zelo izenačene. Razlike zaradi smekevih nasadov se pojavljajo v vrhini organskih in mešanih organsko mineralnih horizontih, ki so najbolj izpostavljeni spremembam.

Najbolj očitno so razlike v Ah - horizontu, ki v vseh štirih primerih sega skoraj do enake globine (8 - 13 cm).

Najbolj izrazito se kaže v razmerju C : N, ki služi oceni stopnje razkrojenosti organske snovi. Najnižja vrednost 8,6 se pojavlja v tleh pod naravnim bukovim sestojem, kjer se tudi po morfoloških znakih kaže najhitrejši proces razkroja organskih snovi. Na ostalih treh objektih so vrednosti precej višje (14,5 - 18,8).
Opazne so tudi razlike pri izmerljivih katjonih. Izmerljivega Ca (0,63 me/100 g tal) in K (2,20 me/100 g tal) je pod bukvijo (1) skoraj še enkrat toliko kot pod čistim smrekovim nasadom (2, 4), kjer je 0,25 oziroma 0,33 me/100 g tal in 1,18 oziroma 1,02 K me/100 g. V tleh pod smrekovim nasadom s posameznimi listavci (objekt 3) je Ca več kot pod objektom 2 in 4 in manj kot na objektu 1 (0,40 me Ca/100 g) tal, K pa enako kot na objektu 1 (2,20 me/100 g tal).

Stopnja nasičenosti z bazami je na objektu 3 (8,5 %) višja kot na objektu 2 (4,9 %) in 4 (4,6%). Glede na podatke o izmerljivih katjonih in vrednostih v Ah - horizontu objekta 1 moremo sklepati, da bi bila stopnja nasičenosti z bazami v Ah horizontu tal pod naravnim sestojem najvišja, vendar pa je zaradi visoke vsebnosti humusa s standardnim analitičnim postopkom ni bilo moč določiti.

Količine fiziološko aktivnega K določene v anom lektatnem izvlečku so prav tako na objektu 1 najvišje (42 mg K₂O/100g tal), nižje so na objektu 3 (26 mg K₂O/100 g tal), najnižje vrednosti pa so bile določene na objektu 4 in 2 (17 oziroma K₂O/100 g tal).

Pri ostalih kemičnih lastnostih, ki so bile z vzorcem že določene, razlike niso močneje opazne. Izstopenodino razlike vrednosti pH v sicer slabše izraženem horizontu Of na objektu 1, kjer je bila ugotovljena sploh najvišja vrednost pH je 5,0, dočin je bila najnižja ugotovljena pod čistim smrekovim nasadom in znaša na objektu 2 3,9, na objektu 4 pa je pH 4,1.
Sarekovi čisti nasadi so na raziskovalnih objektih povzročili določene spremembe na tleh. Že na prvi pogled je jasno opazna razlika v morfološki zgradbi talnih profilov v objektu 2 in 4 v primerjavi s tlehmi pod prirodnim bukovim sestojem. Dodatno so se izoblikovali dobro izraženi organski podhorizonti Of in Oh kot posledica počasnejšega razkroja organskih snovi v tleh pod čistimi sarekovimi nasadi. Morfološke spremembe v talnem profilu se odražajo tudi v določenih spremembah fizičnih in kemičnih lastnosti tal, ki zmanjšujejo produkcijsko sposobnost tal (poslabšava struktura tal, zmanjšane so količine izmenljivih katjonov in rastlinam dostopnih hranil).

Proučevanj lastnosti tal v čistem sarekovem sestoji s posameznimi listavci (objekt št. 3) so pokazala izredno velikopismotenost listavcev v sarekovih kulturah. Že majhen delež listavcev more občutno zavirati škodljive procese degradacije tal v sarekovih nasadih.

Iz teh ugotovitev bi mogli povzeti, da ob prizemno velikem deležu listavcev, ki bi bili enakomerno porazdeljeni v sarekovem nasadu, ne bi moglo priti do večje degradacije tal. Zadsotno količino listavcev bi se mogla trajno ohranjati produkcijska sposobnost rastišč.

Poleg teh objektov pa so opazni tudi ekstremni primeri degradacij nasadih, ki pa se pojavljajo le na posamesnih mestih in na manjših površinah.
<table>
<thead>
<tr>
<th>Profil</th>
<th>Globina cm</th>
<th>pH nKCl</th>
<th>CaCO₃ %</th>
<th>Humus %</th>
<th>C/N</th>
<th>Izenljivi kationi</th>
<th>AL izliskek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ca</td>
<td>Mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/100g</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>0-0,05</td>
<td>4,01</td>
<td>0,2</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,05-0,10</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,10-0,20</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,20-0,40</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,40-0,60</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,60-0,80</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,80-1,00</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>1,00-1,20</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>1,20-1,40</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>1,40-1,60</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>1,60-1,80</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>1,80-2,00</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2,00-2,20</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2,20-2,40</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2,40-2,60</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2,60-2,80</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2,80-3,00</td>
<td>4,1</td>
<td>0,22</td>
<td>2,07</td>
<td>4,4</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

KISLA RJAVA TLA
(distični kambisol)

KEMIČNE LASTNOSTI TAL

KIK Klatonska izmenjalna kapaciteta-SiH
S...vsota izmenljivih kationov
H...izmenljivi: vodik
V...stopnja nasičenosti z bazami

AL izliskek
<table>
<thead>
<tr>
<th>Vzorec</th>
<th>% mehanskih delcev po β v mm</th>
<th>Tekstura osnake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0-0,02</td>
<td>0,02-0,15</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dv 45-58 mm</td>
<td>42,8</td>
</tr>
<tr>
<td></td>
<td>Dvc 58-65 mm</td>
<td>43,8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dv 13-18 mm</td>
<td>37,4</td>
</tr>
<tr>
<td></td>
<td>Dvc 18-24 mm</td>
<td>44,2</td>
</tr>
<tr>
<td></td>
<td>Dvc 24-30 mm</td>
<td>46,7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dv 20-28 mm</td>
<td>40,7</td>
</tr>
<tr>
<td></td>
<td>Dvc 28-35 mm</td>
<td>44,4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dv 44-59 mm</td>
<td>34,5</td>
</tr>
<tr>
<td></td>
<td>Dvc 59-85 mm</td>
<td>39,4</td>
</tr>
</tbody>
</table>
5.2. Primerjava izrazitih primerov degradacije in vpliva uveljavljenih listavcev na tla

Pri proženjanju imigracije listavcev se je zanimala tudi stopnja degradiranosti tal v smrekovih monokulturah, kot enega najpomembnejših dejavnikov rastišča. Zanimalo je, kakšne spremembe so nastale v teh ustrezno označenih smreko-
vih monokultur glede na tla v prvotnem avtohtонem gozdu. Za-
nimalo pa je, da je tudi, kakšen vpliv imajo redki listavci, ki so se uveljavili v smrekovih sestojah na izboljšavo tal.
Zato smo primerjali tudi talni profil pod listavcem - bukvi-
još talni profil smreke monokulture v neposredni bli-
žini. Primerjava vseh štirih talnih profilov je prikazana na tabeli 3.

<table>
<thead>
<tr>
<th>Profili tal/diagram</th>
<th>Struktura</th>
<th>Góbnina (cm)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ba humus</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prahina</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-8</td>
<td>0-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ol</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surov</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>humus</td>
<td>2-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>6-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>45-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>50-75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>75-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>100-125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>125-150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>150-175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>175-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>200-225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>225-250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>250-275</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>275-300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>300-325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>325-350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>350-375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>375-400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>400-425</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>425-450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>450-475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>475-500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>500-525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>525-550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>550-575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>575-600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>600-625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>625-650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>650-675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>675-700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>700-725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>725-750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>750-775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>775-800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>800-825</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>825-850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>850-875</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>875-900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>900-925</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>925-950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>950-975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>975-1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>1000-1025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>1025-1050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>1050-1075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>1075-1100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah</td>
<td>1100-1125</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 3

<table>
<thead>
<tr>
<th>Tekstura</th>
<th>Skeletnost Bv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15 pl</td>
<td>1-11 pl 45%</td>
</tr>
<tr>
<td>1-15 pl</td>
<td>1-11 pl 40%</td>
</tr>
<tr>
<td>1-11 pl</td>
<td>1-11 pl 35%</td>
</tr>
<tr>
<td>1-11 pl</td>
<td>1-11 pl 30%</td>
</tr>
</tbody>
</table>

Vlagnost tal

<table>
<thead>
<tr>
<th>Prekorenjenjenost</th>
</tr>
</thead>
<tbody>
<tr>
<td>do 10%</td>
</tr>
<tr>
<td>do 20%</td>
</tr>
<tr>
<td>do 30%</td>
</tr>
<tr>
<td>do 40%</td>
</tr>
<tr>
<td>do 50%</td>
</tr>
<tr>
<td>do 60%</td>
</tr>
<tr>
<td>do 70%</td>
</tr>
<tr>
<td>do 80%</td>
</tr>
<tr>
<td>do 90%</td>
</tr>
<tr>
<td>do 100%</td>
</tr>
</tbody>
</table>
Iz tabele je razvidno, да se tla najboljša v avtohtonem je-lovo – bolonem gozdu, kjer najhitreje prehajajo v humus in sprtezino. Najslabša pa so v monokulturi, kjer opad smrekovih iglic le počasi prepereva in se nabira denepla plast surovega humusa in prhine. Organiki horizont je tukaj dobe-lejši.

Bistveno boljše stanje opazimo pod listavcem v monokulturi, kjer se v organskih porastih pojavljata namesto surovega hu-musa le tanjša plast prhine prehajajoče v sprtezino. Opa-zimo še, da so tla v monokulturi močno zbite in v vrhunih horizontih, predvsem na južnih legah precej suha.

V smrekovi monokulturi pa se izredni zakisanost pridruži še pozmanjkanje vlage v tleh. Težko preperevajoče smreke iglice vode ne vrkavajo tako dobro kot v humus razpadajoči opad listja in vejico v avtohtonem gozdu. Zaradi kislih in svih tal je močno smanjena biološka aktivnost v tleh, s tem pa tudi razpad organskih ostankov. Kot posledica se po-javlja kopiščenje surovega humusa težko preperevajočih in z mineralnimi substancami revnih smrekovih iglic.

Poleg tega se pojavlja v smrekovih monokulturah enotransko izčrpavanje tal. Smreko korenine se razraščajo in prepletajo le v zgorajih horizontalih tal do približno 25 cm globoko. To enotransko obremenitvijo tal pa se pojavlja tudi vprašanjem alelopatije - zastrupljanja tal s toksinami. Zaradi plitvega korenskega pleteža na zbirih tleh je zmanjšana tudi stoječnost enoličnega smrekovega sastojka in njegova vodoohra
njevalna moč. Architektura naravno grajenih tal, kiijo opazim se v Jauhovem gozdu, je bila v pravilnosti pri snovanju smrek
ovih monokultur porušena. Izginile so mnoge pore, nastale s pri razpadu korenin razpred nih po vsak talnem horizontu, ki so zadevalo vodo in zrak. Tako je bila v tleh omogočena večja aktivnost tlo
tvenih procesov in povečana ploščnost tal.

Vse to ima lahko za pohorske gozdove katastrofalne posledice. Zato potrebujemo razvoj vseh faktorjev, ki bi to stanje izbore
ljali. Zasnela je postrežja flore in favna, predvsem žival, ste vrste, ki pomagajo s prenašanje semen pri posla
jevanju avtohtone vegetacije. Z gozdo gojitvenimi ukrepi podpiramo razvoj avtohtone vegetacije, zlasti listavcev, ki so se ohranili v teh monokulturah in s svojim opadom bistveno bistveno prispevajo k izboljšanju talnih razmer v neposredni bližini dreves.

Kot vidimo iz analiz, plast surovega humusa na tleh podlistavcem hitreje raspada in prebaja v tlejsu plast prihine, ki tla bolje ohranja. Vtleh se zadržuje več vlage, surov humus pa se ne kopisi več. Nitro razpadajoče listje pomešano s smrekovimi iglicami na tleh veže nase več vode in deluje kot katali
zator, ki omogoča večjo biološko aktivnost in hitrejše obnovovo tal. Pod listavci pa pada, predvsem posume, veš padavin, kar prav tako povečuje vlažnost in tloovne procese. Tudi drugod, v kakorkoli naseljenih odprtinah v sestoj, surov humus na tleh zaradi večje izpostavljnosti klimatskim razmeram hitreje raspada.
Ponekod pa se pod listavci, sredi smrekovih monokultur prekrivajo surovim humusom v obsegu odpadega listja, pojavijo tudi še skromna pritalna vegetacija. Kot prvi in najboljši večji znak izboljšanih talnih razmer se pojavlja Oxalis acetosella – zajalca dselja, ki je najpogosteje pazopama na vlažnih in suhim bogatejskih tleh. Osebno jo predvsem v konavah, kjer se odpadlo listje bolj nataira in razpada v humus, ter na trehnažih vejah in štorih v smrekovih sestojih. Pojavlja se tudi na mestih v smrekovih sejostih, kjer so tla zaradi pronicajoče talne vode boljše. Kakšen indikator je Oxalis Acetosella, iz teh analiz ne moremo načrtančno določiti. Gotovo pa bi bilo zanesivo in koristno to raziskati.

Opravljene analize tal so le orientacija. Za nadaljnje podrobnejše proučevanje, pa bi bili potrebni preciznejši programski posameznih analiz, večje število talnih profilov in natančnejše analize mineralne sestave in vsebnosti organskih substancij v tleh.

Zaradi osebnosti naloge sem že deloval opustiti natančnejše proučevanje izboljšancev boja in jih pripravljamo za upoštevanje pri obnovi gozdov. Obenem pa bodo razpolagali tudi s semenom, ki bo imelo pri obnovi naravnjejših gozdarskih gozdov bistveno vlogo. Dajejo pa tudi zaščito in hrano v teh sestojih ozgoženih slavni.

Proučevanje opada listavcev

Pri proučevanju vpliva listavcev na izboljšanje stanja in talnih razmer v smrekovih sestojih me je zanimala tudi velikost in oblika površine, ki jo pokrije odpadlo listje.
ter gostota razmetanega listja v različni oddaljenosti od drevesa. Zato sem v zgornjem sloju smrekovega drogovnaka na Brički poleg bukve izbral že javor, ki prav tako predstavlja v teh gozdovih močnejše zastopano drevesno vrsto. Tudi javor s svojim nitro razkrivajočim opadom pozitivno vpliva na razpad surovega humusa in na večjo biološko aktivnost v tleh.

V optimusu in konkavah, kjer se nabere največ listja opazimo največje detalje, pod bukvo pa tudi žir.

Ne vemo, kakšna gostota bi bila primerna za izboljševanje talnih razmer v smreku z sestojel ter kakšen naj bi bil delčljiv listovcev v njem. Vidimo pa, da je pri bukvi površina ploščke, ki jo prekrije listje s 50 in več listi na m², velika. Površina zavzema kar 720 m² ali 24-krat večje površino kot je projekcija njene krožnice. Če vzamemo, da je 150 listov/m² zadovoljno za izboljšanje talnih razmer, je
s to gostoto prekrito 250 m² ali 9-krat večja površina kot je projekcija krošnje.

Vzemimo pri javorju, ki ima večje liste za zadovoljivo šteto vilo 50 listov na m². S takšno površino je pri njem prekrito 152 m² ali 6-krat večja površina kot je tlors krošnje.

Na teh površinah lahko raste pri bukvi 25 smrek, pri javorju pa 13.

DISKUSIJA

Na podlagi natančnejših raziskav teh podatkov proučevanja opada, tal in drugih rastiščnih zahtev, bi lahko ugotovili optima-len delež listavcev, ki jepotrebna za obstoj zdравega, go-spodarskega gozda. Dobro bi bilo ugotoviti sejo-število li-stavcev na m² - pri kateri se že kaže zadovoljiv vpliv listav-cev na tla v smrekovih monokulturar in na podlagi tega dolo-čiti delež listavcev, ki zagotavljajo naravno gospodarjenje z mlinjskimi grodu. Pri tem bi si lahko pomagali s sponsa-vanjem šivljenja zajčje detelje (Acotosella Oxalis), ki se po-javlja kot prvi znak razkrajanja surovega humusa.)
Raztresenost javorjevega listja (tlonska skica 2)

javor - zg. sl.
d = 29 cm
h = 20 m
naklon - 45°
Pomlajevanje v smrekovih monokulturah (primer)

Danes se sprašujemo, kako bomo kljub teškim pogojem pomlajevanja po naravni poti apropromenili pobočne monokulture v naravnejši in bolj zdrav geopodarški gozd. Zaradi velikega pomena nas oznaka vsak primer pomlajevanja in imigracije avtohtonice vegetacije v svoja rastlina. Na podlagi tega hočemo priti do določenih zaključkov, ki nam bodo služili pri obnovi teh gozdov.

Tako seh v smrekovem drogornjaku na Krički naleplja na ja-
so hruškaste oblike, nastale pri poseku od redče gnilobe in
sekundarno od lubedarja napravljenih dreves. V zeliščnem slo-
ju na jesi se bujno pojavlja avtohtona vegetacija. Ker me
je zanimalo, če so med zelišči in travami pojavlja tudi po-
mladek grmovnih in drevesnih vrst, sem jo analiziral. Na
njejem mest ugotovil sem predvsem razpoložitev različnih osebkov
vegetacije. Veličina in oblika jasevse sem opisal pri metodiki
dela v III. poglavju.

Analiza zbranih podatkov kažejo, da je bujnost rasti v zelišč-
inem sloju močno odvisna od mesta na jasi in da se poleg mno-
gih traw in zelišč na določenih mestih pojavlja tudi pomla-
dek avtohtonicih drevesnih in grmovnih vrst. Po tej ugotovit-
vi sem opazoval kako in kje so pojavljajo. Opozorno, da se
med njimi pojavljajo vrste, ki jih ni v neposredni bližini. S
tem je izražen mečan vpliv favne, ki prenaša svojo hrano-
semenje na večje razdalje in tako pomaga pri pomlajevanju
avtohtonicih, za svojo življenjsko večino vrst. Tako se pojavlja
za zmes bodočih gozdov zelo poseben pomladek bukve s 14,7%,
na čeprav je do najblizšnjega matišnega drevesa skoraj 100 m.
Prisoten je tudi pomladek jereblake, ki je ni dalje zvokoli;
rečeno beseg in molina. Najmočnejše pa je tlorisujen pomladek
smreke s 79,4%.

Pripominjamo, da je pomladek le srednje gost in da se pojav
Ljubljana le na določenih mestih jase. Važno dejstvo pa je, da se splošno pojavlja in to celo v naravni zmesi, kljub temu, da jaso obdaja čista sarekova monokultura. Dostati še moram, da so tla na jasi rahlo vlažna, saj ležijo na širokem zaobljenem pobočnem grebenu, kjer se matle zadrži več vlage.

Iz analiz je razvidno, da je različna jakev svetlobe na posebnih mestih jase glavni vzrok, ki vpliva na pojav pomladka. Le pri določeni svetlobi so ugodne razmere za njegov pojav in razvoj. Drugje pa se močneje uveljavije ostale pritlalna vegetacija zelišč in trav, ki jih pomladek ne more več konkurirovati.

Na prikazani skici sem v obliki kolobarjev razmejil in prikazal območja različnih zmesi in konkurenčne moči pritalne vegetacije oz. območja različne presvetljenosti tal.

Skica 7

Vidi se pomladek drevesnih in gmovnih vrst najmočnejše na prvem območju, kjer so tla najbolj zastrša oz. najmanj presvetljena. Tu se pojavljajo vse bukove mladike (5), oba jerebiki, večina sarekovih mladic in nekaj grmčkov redelga bezga (3). Trave in zelišča se takaj le slabše prisotna.
Širina jase na tem delu je le 1/4 sestojne višine (24 m), kar je približno 6 m; dolžina pa 1/3 sestojne višine ali približno 8 m. Floske ima površine okoli 40 m².

Večje vitalnost zelišč in trav opazimo na drugem kolobarju jase, kjer le-ta še izpodriva pomladek drevesnih vrst. Tu-kaj se ohranja le še smrčka, ki se je pomasnila na nekaj gnijočih, od tal dvignjenih štornih. V zgornjem zeliščnem slo-ju dobi tako še dvolj svežobe za svoj razvoj. Zeliščem in travam enakovredno konkurira tukaj le rdeči bezeg (5 osebkov).

Najbolj bujno se razvija rastline zeliščnega sloja v optimu za tretjih osrednjem delu jase, kjer pride do tal največ svežobe. V borbi za svežo se zelo uveljavljajo trave in zelišča, katerim pa se prižuji še malina. Vse to rastline spomladi hitro v visoko pošene, se razraste in dosti poleti največje višine na vsej jasi, tj. približno 3/4 m. Tako je pomlad skupaj polnosem brezuspešen in zadu-šen.

Ob zgornjem robu jase ob in pod smreki opazimo še eno območje v obliki pasu. Vegetacija je tam le slabo razvita, na tleh prekrithih z surovim humusem smrekovih iglic pa se pojevlja rude trave.

To je šetrto območje, značilna zanj pa so bolj suha in sončна najdlje izpostavljena tla. Zanimivo je, da se na tem pa- su na razdalji okoli 14 m pojavi kar 6 mravljšč. Suha, pod smrekom in pred padavinami bolj zaščitena lega in sončni šar-ki, ki jih ogrevajo, ustvarjajo tukaj najugodnejše pogoje za razvoj jajšč v mravljšču. Odrasle manjše vlašnosti tal pod smrekami so rude trave in surov humus smrekovih iglic.

Ostala vegetacija se ne pojavlja, kljub zadostnim svežobnim razmeram. Ker je takšnih jas malo, mravljšč daleč neokrog ne najdejo tako ugodne lego. Zato so od nje toliko bolj odvisne in se na njej močno zasedile.
Pri proučevanju ekologije pritalne vegetacije na jasi nala-
time še na eno zanimivo področje. To sta mestni na obeh stra-
neh jase, na prehodu med prvim in četrtem območjem. Področje
pod srekom je bolj suho kot na jasi, vendar pa manj pre-
svetljeno in s tem bolj vlažno kot četrtito področje. Tako se
rukajo, od vegetacije na jasi uspešno pojavljajo rdeči bezig
in pa redke trave, ki so prijetne tudi v monokulturi in ob
robu prvega dela jase.

Na vseh področjih opisane pritalne vegetacije je močno opa-
sen vpliv divjadi, ki jo vstrajno obžira. To je njena narav-
a hrama, ki se le redko pojavitja. Ker so takšne jase v
prostranih pohorskih monokulturah zelo rdeče je pritisk
divjadi na nje še toliko večji. Najmočnejše se to odraža na
pomladu drevesnih vrst, ki edina od pritalne vegetacije
ostane svež preko zime. Divjad pa je pozimi in izgodaj spom-
ladi zaradi pomanjkanja krane najbolj ogrožena. Vidimo, da
so se vse bukve na opisani jasi zaradi močnega občiranja
košato, v grmiških razrastov pri tleh, podobno je tudi z
rdečim bezigom. Obzirni pa je tudi večina smrek in obe jere-
buki.

Pestrost avtohtone vegetacije na jasi, izzirjena favna
naravnih pohorskih gorov, ki najde tukaj svoj asil in
njihova medsebojna odvisnost dokazujejo velik ponen takšnih
jas. Na teh mestih je omogočena obnova in razvoj naravnega
ekosistema, ki je bil nekoč po krivdi človeka porušen. Zato
je treba takšne jase ohranjat in jih na novo omanjjet, kjer
je to dopustno. Ohranjat pa je treba tudi ostanke naravnih
gorov, kot življenski prostor avtohtone favne in oaze na-
ravne vegetacije. Od to se širi flora in favna, ki pomaga
zdraviti degradirane pohorske monokulture.

Ugotovili smo, da se drevesne vrste uspešno pomlajšajo le
pri določeni pogojih. Zato je treba njihove zahteve pa-
dobro naj proučevat in jih pri obnovi z gozdno gojiteljstvom
deli tudi ustvarjat. Vidimo, da je rahla presvetljena
najugoslovenska pojava in razvoj posadka. Na jasi velikosti od 1/4 - 1/3 sestojne višine tla niso direktna izpostavljeni na sončnim žarkom in so zato bolj vlažna, kot na večji jasi ali v sestoji, kjer velik del podaj pošadi sklenjen sklep krošen. Zaradi večje vlagove se tla tvorijo procesi aktivnejši, tla pa so poudarani tudi dalj čas zaščiteni s snegom. Na njej je dovolj svetlobe za razvoj posadka drevenih vrst in premdo za močnejši razvoj travnih solicih, kjer pa je povoljneje oteženo zaradi zatavljanja, bomo upoštevali tudi ugodnost posadovanja na vlažnejših ter od tal dvignjenih štorov. V sedanjem ogroženosti od divjadi in ta način posadovanja tudi svojo slabost, saj ga divjadi kljub snegu prej odkrije. Z vršami in vejvami lahko enkratno tako jase menj prehodno in divjadi menj pristopne.

Pri opazovanju imigracije listavcev in avtohtone vegetacije v monokulturi Mislinjskega Pohorja sem naletel še na dve podobi jasi.

Prvo so opazil v smrekovem delbetlaku v nižjih legah Pohorja našo šolo v Mislinjskem grabnju. Na sredi čr rje, v obliki kroga s premerom 1/4 sestojne višine (26 m - tj. 6,5 m) se pojavlja gost smrekov posadak in nekaj lask.

Na drugo jaso pa sem naletel v smrekovem drogovraku, v višji predelih Eričke. Ta je veliko večja, približno 3/4 sestojne višine (25 m - tj. 18,75 m). Na njej sem s površnim ogledom opazil, da je možno zatavljanje. Po posadaka ni bilo niti pod smreckami ob robu jase, kjer seča trav pojenja.

Oba primera nam potrjujeta, da za razvoj posadka ni dovolj samo ugodna presvetljenost tal, ampak tudi dovolj vlagove, ki ju je vedno na odprtem osrednjem delu jase.

Po pripovedovanju gosarjev na GO Mislinja pa se pojavlja posadak tudi pod avtohtonimi bukami ne S pobočju mislinjskega grabnja, v starjem smrekovem sestoji, kjer so listavce posadali s svetlitvenim redčanja.
To so razveseljivi rezultati, ki nas vodijo k nadaljnjemu proučevanju naravnega pomlajevanja. Še naprej hemo negovali redke avtochtone listavce v degradiranih zasekarskih sestojih, saj še danes veliko pomenijo pri izboljševanju stanja pri njej, predvsem tal. Še vsega pomen pa bo dosegli v obnavljanju naravnjših zasekarskih gozdov.
6. ODNOŠ GOZD : DIVJAD TER UKREPI NA TEM PODROČJU KOT POSEBEN DEJAVNIK PRI UVELJAVLJANJU LISTAVCEV IN PREMERNI SREČTOVIH MONOKULTUR MISLINJSKEGA Pohorja v naravnjejši gozd

Odnos med gozdom in divjadje je v pogojih mislinjskega Pohorja zelo poseben dejavnik pri vračanju listavcev na svoja rastišča in premeni srečtovih monokultur v naravnjejši gozd. Zaradi pozankanja hrane v teh narančnih umetno osnovanih srečtovih gozdovih, divjadi RL obžiranjem vršičkov drevesnega, sladja ogroža naravno poseljevanje. Zlasti v zime, ko je pozankanje hrane največje je obžiranje močno.

Gozdarji se zavedamo, da moramo ustvariti ugodnejšo po-goje za življenje avtohtone divjadi in ostalih živalskih vrst, če hočemo zagotoviti naravno poseljevanje v mislinjskih gozdovih. Po lahko dosežemo le v sodelovanju z lovci, ki morajo skrbeti za zimsko kraljevanje divjadi in z odstranom reguliran naravno število, strukturo ter vrsto populacij.

SIS za gozdarstvo na GO Slovenj Gradec je v sodelovanju z IGLG (odsek za lovstvo) v Ljubljani izmenovala strokovno komisijo za usklajevanje lovstva z gozdarstvom. Izvaja se vrsta ukrepov in posvetovanj.
Odsek za lovstvo Inštituta za gozdno in lesno gospodarstvo je v dogovoru s Tovarno dušika Ruše prevzel nalogo da testira nov, prvič doma pripravljen kemični preparat-repelent "kemakol" za zaščito gozdnega smladja pred ob- jedanjem po veliki divjadi. V sodelovanju z LESNO Slovenj Grašča želi kot drugod po Sloveniji testirati tudi na območju TOZD-a gozdarstvo Mislinja. Test se nanaša na obdobje mirovanje vegetacije 1979/80, sam preparat pa je pripravljen na bazi past, slično vedanju uvoženem "cervacolu", ki se je pri zaščiti smladja v teh pogojih učinkovito obnesel.

Na območju Slovenj Graškega Pohorja se v sodelovanju z IGLG v Ljubljani isvaja evidentiranje opažene divjadi s posočje oparovalnih listov. S težijo dobiti (približno) slike sezonske razširjenosti nekaterih vrst divjadi v n. širšem območju Pohorja (jelenjad, srcajda, delamjek, gams, divji petelin). Zbrane informacije bodo služile kot izhodišče načrtovanja ukrepov v kompleksu gozd: divjad.

Leta 1978 je bil sklenjen družbeni dogovor o usklajenem gospodarjenju s prostorom v katerem sta rastlinski in živalski svet pod posebnim družbenim varstvom (Uradni list SRS št. 6/78).
- Temeljni smotre tega dogovora je dogovarjanje o številčnosti divjadi v skladu z gospodarskimi cilji gozdarstva in kmetijstva ter lovstva (opredelitev zgornje in spodnje meje številčnosti posameznih vrst divjadi na enoto površine (4. člen))

- Lovske organizacije, podpisniki tega dogovora, se obvezujejo, da bodo uravnavele številčnost, starostno in spolno strukturo ter zastopanost posameznih vrst divjadi sora zmerno s pogojki okolja. Osnovna merila pri tem uredanju so: stopnja škoš od divjadi, stopnja izkorisčenosti rastlinstva s pašo in objedanjem od divjadi, merljivi pokazatelji stanja populacij in kvalitete divjadi (3. člen).

- Gozdno gospodarske organizacije se obvezujejo, da bodo pri načrtovanju in uredanju del upoštevale tudi potrebe divjadi. Skrbeli naj bi za ohranjanje ustrezne deleža za šivljenje divjadi posameznih grmovnih in drevesnih vrst, lasti v smernim načinom nege gozdov in drevesnih vrst; uredjaje pasiščan obrahnjale za divjad pomembno gozdne površin (območja zimskih stanišč - jelenja ali in gans, rastilišča divjega petelina, remiz za poljsko divjad). V ta namen naj bi izločile tudi določen delež gozdne površin. Izvajale naj bi kemično in mehanično zaščito aladja, v najbolj ogrožene predelih na naj bi vnašale plodonosno drevje in grmovne vrste (v ostroječenem območju ali v namensko ustvarjene preseke (7. člen)).
Odsek za lovstvo pri gozdarskem inštitutu poskuša z nevzetim dogovarjanjem pomagati lovcem in gozdarjem pri uresničevanju skupnih interesov nakazanih v družbenem dogovoru.

- Inštitut je pripravil kratko študijo o zimskem kraljevanju divjad najavneša, silajirano krm. (Z ustreznim kraljenjem lahko zaščitimo divjade tudi v nevarnem okolju.)

- V modelranju z GG Slovenj Gradec in TOZD-om za gozdarstvo Mislinja je inštitut izvedel tudi raziskovalno nalogo "Programiranje gospodarstva z veliko divjadom po Pohorju". Na koncu so podali kritično oceno študije in jih je med njimi veliko zalaganje za gospodarstva (GG Maribor, LESNA Slovenj Gradec in GG Celje), ki so obravnana v njej.

V zadnjih dveh letih so se lovci in gozdarji z inštitutom, LESNE in TOZD-a Mislinja večkrat sestali in zastavili vrsto konkretnih ukrepov za izboljšanje življenjskih pogojev divjadi na območju mislinjskega Pohorja.

Na sestanku skupne komisije za gospodarstvo z lovno divjadjo 5. IX. 1978 so se dogovorili o odstranitvi, ukrepah za preprečevanje škod, o zimskem kraljenju divjadi in o potrebnih gozdrogotevnih ukrepah na območju pohorskega lovišča.

Osnovljivale nas je pašne povračila predvsem na J-ekspozicijah, kjere se najprej skupni Frazinuli ing. Jože Filej je predlagal, da sedanje pašnike obra-
njamo s košnjo in izsekovanjem gozdnega drevja. V gozdovih naj bi ustvarili prehrambene jase (močne pre-reditve s podsajevanjem grmovnih vrst (rdeči bezeg, jerebka, jelša, vrba, buk in druge vrste).

Dogovorili so se o obdelavi pašnih njiv (šrovt, detelja, ipd.), o vsakoletni košnji in umetnem gnojenju pašnih površin ter o ozelenjevanju usedkov in nasipov z grmovnimi vrstami. Zastavljeni ukrepi (ozelenjevanja in ohranjanje pašnih površin) se izvajajo. Na območju mislinjskega Pohorja pa je za vzpostavitev ravnoveseja v gozdnih biocenozi 1ag. Jože Filej vnesel tudi en par velike uharice.

Na negoždnih površinah in pašnikih se pojavljajo naravne sukcesije avtohtonega gozdnega drevja in grmovnih vrst, ki imajo velik pomen za prehranjevanje in zavetje živali in premeni smrekovih kultur v naravnejši gozd (fotogr. 11)
7. SKLEPNE UGOTOVITVE

Pri spremljanju razvoja smrekovih monokultur mislinjškega Pohorja ter spreminjanja lesne zaloge in števila listavcev v njih od leta 1954 do leta 1974, ko so bili sestoji trikrat premerjeni, pridemo do ugotovitve, da se je delež listavcev v smrekovih kulturah povečeval. Še bolj pa se je ob prizadevanjih gozdarjev povečeval njihov melioracijski vpliv na zaviranje degradacijskih procesov v teh nenaravnih, umetno osnovanih smrekovih monokultur.

Osnovna zakonitost pri uveljavljanju redko ohranjeni trdih listavcev (bukev, gorski javor) v starejših sestojih in pri vračanju listavcev v mlađe sestoje je ohranjanje oziroma povečanje njihovega števila. Zaradi izredne vitalnosti avtohtonih listavcev v vseh razvojnih fazah, se njihovo število pri odraščanju sestojev ohranja oziroma povečuje, število iglavcev pa se zaradi medsebojne konkurence zmanjšuje. Tako se delež listavcev povečuje.

Vidiemo, da so listavci najmočneje zastopani v nižjih debeških stopnjah. Vzrok temu je njihov večji delež v mladih sestojih in v zapostavljenem, socialnem položaju v starejših sestojih. Zaradi prehajanja teh listavcev nad
meritveni prag, se njihovo število in lesna zaloge v nižjih debelinskih stopnjah močneje spreminjata. To je odvisno predvsem od deleža mladih sestojev v obravnvanem obdobju.

Ulavin razlog stagnacije je večji delež mladih sestojev z močnejšim prebivanjem nad meritveni prag v prvem obdobju po letu 1954. Zakrat je bilo na območju mislinjskega Pohorja 65% smrekovih monokultur (enodobni in raznobašni gozdovi) starih do 60 let oziroma 36% mladih kultur starih do 40 let. Leta 1974 pa je bilo mlajših sestojev do 60 let starosti le še 41% oziroma 25% mladih kultur starih do 40 let. Iz navedenega lahko razberemo, da se je delež mladih sestojev do 60 let starosti v tej obi zmanjšal za 22%, delež mladih sestojev do 40 leta pa za 11%.

Vzrok manjšega pripaščanja števila in lesne zaloge listavcev po letu 1964 pa je tudi izločanje listavcev nižjih debelinskih stopenj pri aegovalnih ukrepih zaradi učvrščanja v starejših smrekovih sestojah. Listavci v spodnjem položaju so se ponekod pojavljali tudi v skupinah (bukov) in jih je bilo treba preraščiti.

Med obravnvanimi enodobnimi gozdovi pa je saje-
tih tudi nekaj ha bukovih sestojev, kjer se seka (vpliv sa lžal).
Lesna zaloge listavcev se je v proževanih enodobih (smrekovih) sestojih mlinjskega Pohorja povečala od 15,4 m³/ha v letu 1954 na 20,3 m³/ha v letu 1974 to je za približno 5 m³/ha ali 32 %. Vendar pa po letu 1964 ni narasčala, ampak se je zmanjšala od vrednosti 20,8 m³/ha za 0,5 m³/ha. V istem obdobju se je lesna zaloga iglav- cev povečala od 18,2 m³/ha v letu 1954 na 26,8 m³/ha v le- tu 1974 to je kar za 8,6 m³/ha ali za 47 %. Tudi pri iglavcii (smreki) opazimo do leta 1964 močnejše prira- šanje kot do leta 1974, zaradi večjih prirostkov iglav- cev z višjo lesno zalogo se je delež lesne zaloge listav- zmanjšal od 7,8 % v letu 1954 na 7,0 % v letu 1974.

Delaž listavcev se je kljub upadanju skupnega šte- vilu trdih in menikih listavcev zaradi močnejšega izpa- danja smrke povečeval. Od 3,6 % v letu 1954 se je pove- čal na 4,8 % v letu 1974.

Znova pridemo do ugotovitve, da se zaradi odraščanja sestojev v izbranih oddelkih in s tem zmanjšanja deleža mladih sestojev, ki preraščajo meritveni prag, zastopanost listavcev v prvih debelinskih stopnjah v drugem obdobju po letu 1964 zmanjša. Enako, kot smo videli, velja tudi za mlade sestoje mislinjskega Pohorja, katerih delež se od leta 1954 prav tako zmanjšuje.

Najbolj nezorno nam številčno uveljavljanje listavcev in njihov vse večji pomen v smrekovih monokulturah prikaže procentualni delež listavcev v debelinskih stopnjah. Delež listavcev se zaradi odraščanja sestojev, uveljavljanja listavcev in izpadanja igravcev, povečuje iz obdobja v obdobje.
Pomen listavcev, njihovo pojavljanje in način uveljavljanja v smrekovih monokulturah podrobnije spoznamo pri proučevanju posameznih razvojnih fazah na izbranih raziskovalnih objektih.

Vidimo, da je bolj kot število in lesna zaloge posebna razporedbitev in položaj listavcev v smrekovih monokulturah. Opažamo, da se pokrovnost tal z listavci in njihovim opadom veliko močneje povečuje kot število, kar je za gozdna tla in zaviranje degradacijskih procesov v smrekovih monokulturah najpomembnejše.

Pri spoznavanju imigracijske moči avtohtonih listavcev v smrekovih monokulturah mislinjskega Pohorja, opazamo njeno različno intenziteto glede na rastišča in fazo razvoja gozdnega sestoja. Od drevesnih vrst listavcev se ne področju raziskovalnih objektov pojavljata predvsem bukev (70%) in gorski javor. V začetnih, pionirskih sukcesijah in v mladih sestojih pa se pojavljajo še vrba, siva jelša, posamično kakšna breza in jerebika ter rdeči bežeg, leska in dišeči volčin od grsovnih vrst.

Listavci se močneje pojavljajo in so vitalnejši na vlažnejših, proti S in V eksponiranih rastiščih oziroma na vlažnih aceretalnih rastiščih in ob potokih. S presvetlitvijo pa se konkurenčna moč listavcev v spodnjem položaju v smrekovih monokulturah še poveča.
Presvetljevanje in inteziteta presvetljevanja je še posebno pomembna za pomlajevanje in začito mladja pred obžiranjem od divjadi. Gozdna jasa z velikostjo od 1/4 do 1/3 sestojne višine osogoča pomlajevanje in prepreči zatravljanje. Zaradi debelejše snežne odeje, ki jo krita pred soncem v senci sestoja pa je pomladek ovaričan tudi pred obžiranjem.

Pri pomlajevanju in vračanju listavcev na svoja rastišča posamezno vlogo živalskih vrst, ki z svojim načinom življenja prenašajo seme nekaterih avtohtonih vrst listavcev. Sredi čistih smrekovih mosokultur zasledimo, kljub višini nad 1000 m mlado češnjo, bukev in celo hrast.

Zaradi pomembne naravne hrane v smrekovih kulturah za divjadi in obžiranje pomladka ter zaradi pomenu živalskih vrst in naravne hrane za rožnovesje v gozdni biocenosi se gozdjarji in lovci v zadnjem času dogovarjajo o usklajenem gospodarjenju.

Pri proučevanju uveljavljanja leta 1956 v starejši smrekovi sestoj podsajene bukve, zasledimo njeno različno uspešnost od jarka do grebena. V vsak primerih ugotovimo njeno izredno vitalnost. Klub močnemu obžiranju od divjadi na sončnem grebenu, se bukev obžirana v pritalnem položaju ohranja in životari med štrkalji odgriznih vejic. Danes se ob uspešni začiti s premazom "cerracol" bujno razrašča in uveljavlja.

Najbolj uspešna je podsajena bukev na vlažnejšem V počju in na acerstalnem rastišču ob potokama.
Delež listavcev je največji v mladih smrekovih sestojih, kjer se jim je pospešala večja pozornost in se listavcev ni izsekovalo kot pred vojno v starejših sestojih.

Tak primer je umetno osnovana gošča - letvenjak na Jauhovi frati. Na ugodni SV legi so se med posajenimi smrekami smožično pojavili listavci, ki se s svojo izredno vitalnostjo in s pomočjo gozdarjev uspešno uveljavljajo. Njihov delež je v zgornjem sloju gošče dosegal 33 % oziroma 26 %, če odštejemo pionirske vrste, ki v razvoju še zaostajajo. Kljub temu, da iz gošče-letvenjaka izpadajo pionirske vrste, ki so v začetku med listavci prevladovale, se procenjalo njihov delež povečuje, bukev, ki je v zgornjem sloju z 82 % najmočnejše zastopana vrsta listavcev, se še vedno vriva med smeke. Zaradi smrek, ki izpadajo, se njihov delež povečuje.

Večjo prisotnost listavcev opazimo, tudi v obravnavanem smrekovem drogovnjaku, vendar je njihov delež gosti manjši kot v smrekovi gošči. Ti listavci (bukev, gorski javor) se pojavljajo predvsem v spodnjem položaju obravnavanega sestojja. Zato jih je nekaj še pod meritvaniem pragom. Značilna za njih je slaba stojnost in opiranje na okoliške smeke. Ti listavci se ponekod pojavljajo tudi v skupinah. Najmočnejše so prisotni na vlažnejših območjih. V pobočju. Njihovo prirošča-
ščanje je usmerjeno predvsem v višino k svetlobi, kjer se potem razrastejo in okrepijo. Listavcem lahko pri tem pošagamo s svetlitvenimi redčenjami, vendar moramo paziti, da s tem ne ogrozimo njihove solidnosti. Listavci na ukrepe gozdarjev vsopodobno reagirajo. Močnejši cesvki pa so začeli ponekod tudi semeniti. V kakšnih rasmerah so se ohranjali listavci nam najbolje prikaže primer 50 let stare bukve s presmerom 9 cm in višino kar 18 m. Med listavci v spodnjem položaju pa se poleg bukve, kljub neugodnim razmeram pojavlja tudi gorski javor z veliko vitalnostjo.

V smrekovih debeljakih so listavci le redko prisotni. Pojavljajo se le ob usekanih kolovozih in na drugih ugodnejših rastiščih v sestojih, kjer se lahko na novo pojavljajo. Ti sestoji so bili v preteklosti še izpostavljeni intenzivnemu načinu velezastolškega gospodarjevanja in issekovanju listavcev.

Pri pročevanju posena vceljavnih listavcev v smrekovih monokulturah je še zanikal predvsem njihov vpliv na zaviranje degradacijskih procesov v teh. Ugotavljal sem stopnjo degradacije tal v smrekovi monokulturi v primerjavi s tlemi v ohranjem naravnem bukovem gozdu pod Malim Crnim vrhom na Pohorju. Proučeval sem vpliv različnega opada listavcev in iglavcev (smreke) na procese v teh. Pri tem me je žalnila tudi rastresenost.
in površina odpadega listja.

Proučeval sem tudi primere izrazite degradacije tal v primerjavi s tlemi v narevnom jelovo-bukovem gozdou. Pri tem se ponekod v čistih smrekovih kulturah pokaže izredna zaklananost (pH=2.8) in močno kopičenje surevega humusa.

Pri primerjavi tal v smrekovih monokulturi s tlemi v narevnom bukovem gozdou ter tal pod listavcem v smrekovi monokulturi ugotovimo, da so čisti smrekovi nasadi pozorili določene spremembe v tleh.

Že na prvi pogled je jasno opazna razlika v morfološki zgradbi talnih profilov v objektu 2 in 4 pod smrekovo kulturo v primerjavi s tlemi prirodnim bukovim sestojem. Dodatno so se izoblikovali dobro izraženi organski podhorizonti O6 in O8 kot posledica počasnejšega razkroja organskih snovi v tleh pod čistimi smrekovimi nasadi. Morfološke spremembe v talnih profilu se odražajo tudi v določenih spremembah fiziikalnih in kemičnih lastnosti tal, ki zmanjšujejo produksijsko sposobnost tal (poslabšana struktura tal, zmanjšane so količine izmenljivih kationov in rastlinam dostopnih hranil).

Proučevanja lastnosti tal v čistem smrekovem sestoju s posameznimi listavci so pokazala izredno velik povem prisotnosti listavcev v smrekovih kulturah.
že majhen delež listavcev more občutno zavirati škodljive procese degradacije tal v smrekovih nasadih.

Diskusija

Iz teh ugotovitev proučevanja tal bi mogli povzeti, da ob primernem velikem deležu listavcev, ki bi bili enakomerno porazdeljeni v smrekovem nasadu, ne bi moglo priti do večje degradacije tal. Žadnostno količino listavcev bi se mogle trajno ohranjati produkcija spośobnost rastišč.

Pri proučevanju raztresenosti in površine odpadega listja pod uveljavljenim javorjem in bukvijo v smrekovem drogovnjaku-debeljaku (60 let), ugotovimo, da je pri bukvi površina ploskev, ki jo prekrije listje in več listi na m^2 kar 24-krat večja kot je površina projekcije njene krošnje. Pri javorju je s takšno in večjo gostoto proti drevesu prekrita 6-krat večja površina kot je tloris krošnje.

Če vsamemo, da je pri bukovem opadu zadovoljiv vpliv na zaviranje degradacionih procesov pri 150 listih na m^2 in pri javorju z večjimi listi 50 listov na m^2, lahko na tej površini raste 25 smrek pri bukvi in 13 smrek pri javorju.

S podrobnjšimi raziskavami bi lahko ugotovili pri kakšni gostoti listnatega opada se pokače zadovoljiv...
vpliv na zaviranje degradacijskih procesov v tleh. Na podlagi tega pa bi lahko ugotovili kakšen delež listavcev bi bil ob enakomerni razporeditvi v smreko vih sestojih potreben za ohranjanje naravnosti in produkcijske sposobnosti rastišč. Pri tem bi si lahko posagali s spoznavanjem življenja najčešče detelje (Acetosella Oxalis), ki se pojavlja na tleh v smreko vih monokulturah kot prvi znak razkrajanja surovega humusa.

Na podlagi ugotovljenih razvojnih trendov v mislinjskih smreko vih monokulturah, obstoječega deleža listavcev v in vse večjega deleža listavcev v starjših sestojih lahko predvidevamo, da bo v bodoče delež in pomen listavcev v mislinjskih gozdovih še naraščal. Ko nam bo uspelo posladiti sedanje srednjedobne smreko vihe sestoj s posamičnimi listavci, bodo mislinjski gozdovi dobili svojo naravnejšo početno in željeno zgrajbo. To naj bi bilo čež približno 90 let oziroma 70 let, odvisno trajanja posla jevalne dobe.
5. Bajdura P.: Pohorje, Ljubljana, 1924 (geogr.v.).